1 |
WANG Z G, WANG H B, SUN M B. Review of cavity-stabilized combustion for scramjet applications[J]. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2014, 228(14): 2718-2735.
|
2 |
王璐, 高亮杰, 钱战森, 等. 低马赫数下多凹腔燃烧室非稳态燃烧过程[J]. 航空学报, 2016, 37(S1): 112-118.
|
|
WANG L, GAO L J, QIAN Z S, et al. Unsteady combustion process of multi-cavity combustion chamber at low Mach number[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(S1): 112-118 (in Chinese).
|
3 |
SUN M B, WANG H B, CAI Z, et al. Unsteady supersonic combustion[M]. Singapore:Springer, 2020.
|
4 |
HEPPENHEIMER T A. Facing the heat barrier: A history of hypersonics[R]. Washington, D.C.: NASA, 2007.
|
5 |
LUO S J, NI Z Y, LIU Y F. Study on the characteristics of interaction flowfields induced by supersonic jet on a revolution body[J]. Theoretical and Applied Mechanics Letters, 2017, 7(6): 362-365.
|
6 |
TIAN Y, LE J L, YANG S H, et al. Investigation of combustion characteristics in a kerosene-fueled supersonic combustor with air throttling[J]. AIAA Journal, 2020, 58(12): 5379-5388.
|
7 |
TIAN Y, YANG S H, LE J L, et al. Investigation of combustion process of a kerosene fueled combustor with air throttling[J]. Combustion and Flame, 2017, 179: 74-85.
|
8 |
CHANG J T, ZHANG J L, BAO W, et al. Research progress on strut-equipped supersonic combustors for scramjet application[J]. Progress in Aerospace Sciences, 2018, 103: 1-30.
|
9 |
岳连捷, 张旭, 张启帆, 等. 高马赫数超燃冲压发动机技术研究进展[J]. 力学学报, 2022, 54(2): 263-288.
|
|
YUE L J, ZHANG X, ZHANG Q F, et al. Research progress on high-mach-number scramjet engine technologies[J]. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(2): 263-288 (in Chinese).
|
10 |
LIU Q L, BACCARELLA D, LEE T H. Review of combustion stabilization for hypersonic airbreathing propulsion[J]. Progress in Aerospace Sciences, 2020, 119: 100636.
|
11 |
WALTRUP P J, WHITE M E, ZARLINGO F, et al. History of U.S. navy ramjet, scramjet, and mixed-cycle propulsion development[J]. Journal of Propulsion and Power, 2002, 18(1): 14-27.
|
12 |
FOELSCHE R, LEYLEGIAN J, BETTI A, et al. Progress on the development of a freeflight atmospheric scramjet test technique: AIAA-2005-3297[R]. Reston: AIAA, 2005.
|
13 |
WALKER S, RODGERS F, PAULL A, et al. HyCAUSE flight test program: AIAA-2008-2580[R]. Reston: AIAA, 2008.
|
14 |
BISEK N J. High-fidelity simulations of the HIFiRE-6 flow path: AIAA-2016-1115[R]. Reston: AIAA, 2016.
|
15 |
CHAN W Y K, RAZZAQI S A, TURNER J C, et al. Freejet testing of the HIFiRE 7 scramjet flowpath at Mach 7.5[J]. Journal of Propulsion and Power, 2018, 34(4): 844-853.
|
16 |
VANYAI T, GRIEVE S, DENMAN Z, et al. Fundamental scramjet combustion experiments using hydrocarbon fuel: AIAA-2018-5201[R]. Reston: AIAA, 2018.
|
17 |
VANYAI T, LANDSBERG W O, MCINTYRE T J, et al. OH visualization of ethylene combustion modes in the exhaust of a fundamental, supersonic combustor[J]. Combustion and Flame, 2021, 226: 143-155.
|
18 |
LIU Q L, BACCARELLA D, LANDSBERG W, et al. Cavity flameholding in an optical axisymmetric scramjet in Mach 4.5 flows[J]. Proceedings of the Combustion Institute, 2019, 37(3): 3733-3740.
|
19 |
LIU Q L, BACCARELLA D, LEE T H. Combustion stabilization in an axisymmetric scramjet in Mach 4.5 flows: AIAA-2019-1681[R]. Reston: AIAA, 2019.
|
20 |
LIU Q L, BACCARELLA D, MCGANN B, et al. Dual-mode operation and transition in axisymmetric scramjets[J]. AIAA Journal, 2019, 57(11): 4764-4777.
|
21 |
BACCARELLA D, LIU Q L, MCGANN B J, et al. Combustion induced choking and unstart initiation in a circular constant-area supersonic flow[J]. AIAA Journal, 2019, 57(12): 5365-5376.
|
22 |
BACCARELLA D, LIU Q, MCGANN B, et al. Isolator-combustor interactions in a circular model scramjet with thermal and non-thermal choking-induced unstart[J]. Journal of Fluid Mechanics, 2021, 917: A38.
|
23 |
LANDSBERG W O, GIBBONS N N, WHEATLEY V, et al. Flow field manipulation via fuel injectors in scramjets: AIAA-2017-2389[R]. Reston: AIAA, 2017.
|
24 |
LANDSBERG W O, GIBBONS N N, WHEATLEY V, et al. Improving scramjet performance through flow field manipulation[J]. Journal of Propulsion and Power, 2017, 34(3): 578-590.
|
25 |
LANDSBERG W O, WHEATLEY V, SMART M K, et al. Performance of high Mach number scramjets-Tunnel vs flight[J]. Acta Astronautica, 2018, 146: 103-110.
|
26 |
LANDSBERG W O, WHEATLEY V, SMART M K, et al. Enhanced supersonic combustion targeting combustor length reduction in a Mach 12 scramjet[J]. AIAA Journal, 2018, 56(10): 3802-3807.
|
27 |
DAMM K A, LANDSBERG W O, MECKLEM S, et al. Performance analysis and validation of an explicit local time-stepping algorithm for complex hypersonic flows[J]. Aerospace Science and Technology, 2020, 107: 106321.
|
28 |
PETERSON D M. Simulation of a round supersonic combustor using wall-modeled large eddy simulation and partially-stirred reactor models[J]. Proceedings of the Combustion Institute, 2023, 39(3): 3137-3145.
|
29 |
MECKLEM S A, LANDSBERG W O, CURRAN D, et al. Combustion enhancement via tandem cavities within a Mach 8 scramjet combustor[J]. Aerospace Science and Technology, 2022, 124: 107551.
|
30 |
闫博. 基于PLIF测量技术的圆截面超声速燃烧室燃料掺混与火焰稳定机理研究[D]. 长沙:国防科技大学, 2023.
|
|
YAN Bo. Investigations of the fuel mixing and flameholding mechanism in a circular supersonic combustor based on PLIF techniques[D]. Changsha: National University of Defense Technology, 2023 (in Chinese).
|
31 |
汤涛, 于江飞, 黄玉辉, 等. 圆截面超声速燃烧室乙烯燃料喷注火焰结构和模式分析[J]. 航空学报, 2024, 45(11): 528880.
|
|
TANG T, YU J F, HUANG Y H, et al. Analysis of structure and regime of ethylene fuel injection flame in circular-section supersonic combustor[J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(11): 528880 (in Chinese).
|
32 |
TANG T, WANG Z G, HUANG Y H, et al. Investigation of combustion structure and flame stabilization in an axisymmetric scramjet[J]. AIAA Journal, 2022, 61(2): 585-601.
|
33 |
TANG T, WANG H B, SUN M B, et al. Evaluation of flamelet/progress variable model for the applications in supersonic combustion using hybrid RANS/LES approach[J]. Aerospace Science and Technology, 2022, 126: 107633.
|
34 |
MA G W, SUN M B, ZHAO G Y, et al. Numerical investigation of an axisymmetric model scramjet assisted with cavity of different aft wall angles[J]. International Journal of Aerospace Engineering, 2021, 2021: 7525824.
|
35 |
TANG T, WANG Z G, LI H S, et al. A method for optimizing reaction progress variable and its application[J]. Aerospace Science and Technology, 2022, 130: 107888.
|
36 |
马光伟, 孙明波, 赵国焱, 等. 不同壁温及差分格式下超燃冲压发动机的仿真[J]. 航空学报, 2021, 42(S1): 16-27.
|
|
MA G W, SUN M B, ZHAO G Y, et al. Simulation of scramjet under different wall temperatures and difference schemes[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(S1): 16-27 (in Chinese).
|
37 |
MENTER F R. Two-equation eddy-viscosity turbulence models for engineering applications[J]. AIAA Journal, 1994, 32(8): 1598-1605.
|
38 |
曾宇, 汪洪波, 孙明波, 等. SST湍流模型改进研究综述[J]. 航空学报, 2023, 44(9): 027411.
|
|
ZENG Y, WANG H B, SUN M B, et al. SST turbulence model improvements: Review[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(9): 027411 (in Chinese).
|
39 |
杨越, 游加平, 孙明波. 超声速燃烧数值模拟中的湍流与化学反应相互作用模型[J]. 航空学报, 2015, 36(1): 261-273.
|
|
YANG Y, YOU J P, SUN M B. Modeling of turbulence-chemistry interactions in numerical simulations of supersonic combustion[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(1): 261-273 (in Chinese).
|
40 |
LI L, WANG H B, ZHAO G Y, et al. Efficient WENOCU4 scheme with three different adaptive switches[J]. Journal of Zhejiang University: Science A, 2020, 21(9): 695-720.
|
41 |
PITSCH H. FlameMaster: A C++ computer program for 0D combustion and 1D laminar flame calculations[EB/OL].[2023-12-04]. .
|
42 |
Mechanical and Aerospace Engineering, University of California at San Diego. Chemical-Kinetic mechanisms for combustion applications[EB/OL]. California: San Diego Mechanism Web Page, 2016. (2016-12-14) [2023-12-07]. .
|
43 |
YAMASHITA H, SHIMADA M, TAKENO T. A numerical study on flame stability at the transition point of jet diffusion flames[J]. Symposium (International) on Combustion, 1996, 26(1): 27-34.
|