收稿日期:
2023-10-25
修回日期:
2023-11-01
接受日期:
2023-12-04
出版日期:
2024-08-25
发布日期:
2023-12-07
通讯作者:
黄伟
E-mail:gladrain2001@163.com
基金资助:
Zijian ZHAO, Chaoyang LIU, Wei HUANG()
Received:
2023-10-25
Revised:
2023-11-01
Accepted:
2023-12-04
Online:
2024-08-25
Published:
2023-12-07
Contact:
Wei HUANG
E-mail:gladrain2001@163.com
Supported by:
摘要:
在高超声速飞行条件下,燃料在超燃冲压发动机燃烧室内的驻留时间非常短,燃料与氧化剂的充分混合、点火和维持稳定的燃烧是高超声速推进的关键。为了提高燃烧室中燃料的混合与燃烧性能,国内外研究人员将诸如支板、斜坡、凹腔、后向台阶等增混稳燃装置引入燃烧室,取得了一定成果。在以往的研究中,支板和凹腔在流场中形成的回流区能达到较好增混稳燃效果,受到了广泛的关注与拓展。本文综述了近年来支板、凹腔及支板-凹腔组合构型的国内外研究进展,并对相关研究的未来发展方向作出了展望。
中图分类号:
赵子健, 刘朝阳, 黄伟. 支板/凹腔燃烧室混合与燃烧性能研究进展[J]. 航空学报, 2024, 45(16): 29765-029765.
Zijian ZHAO, Chaoyang LIU, Wei HUANG. Research progress on mixing and combustion performance of strut/cavity-based combustor[J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(16): 29765-029765.
表 1
支板燃烧室的研究内容综述[16-21, 24, 26-36]
研究内容 | 代表论文 | 研究方法 | 模型维数 | 研究内容 |
---|---|---|---|---|
稳焰机理 | Li等[ | LES | 三维 | 上壁扩张角对燃烧室性能的影响 |
Pinto等[ | 试验 | 滞止温度对火焰稳定模式滞后的影响 | ||
Yuan等[ | LES | 三维 | 燃烧室中火焰预混、热声耦合特性 | |
支板形状 | Singh和Mukhopadhyay等[ | RANS | 二维 | 支板形状和前缘钝化对燃料混合的影响 |
Zhang等[ | LES | 三维 | 波瓣支板燃烧室湍流燃烧特性 | |
Zhang等[ | RANS | 三维 | 颠簸支板对燃烧室性能提升 | |
Pranaykumar等[ | RANS | 二维/三维 | 空气节流支板对燃烧室性能的影响 | |
Li等[ | RANS | 二维 | 智能可变支板优化燃烧室性能 | |
Choubey等[ | RANS | 二维/三维 | 双支板形状、位置与燃料喷注方式 | |
Nair等[ | 混合RANS/LES | 二维 | 被动辅助支板燃烧室混合与燃烧特性 | |
喷注方式 | Pu等[ | RANS | 二维 | 双喷孔支板提升燃料混合性能 |
Pu等[ | RANS | 二维 | 辅助支板主动喷注增混稳燃方案 | |
文献[ | 试验/LES | 三维 | 支板后缘补氧喷注混合与燃烧特性 |
表 2
凹腔燃烧室的研究内容综述[39,43-55,57-60,65-67,69-70,72,78-83]
研究内容 | 代表论文 | 研究方法 | 模型维数 | 研究目的 |
---|---|---|---|---|
增混稳焰机理 | Ruan等[ | LES | 二维 | 凹腔燃料停留时间和燃烧效率 |
Hammack和Ombrello[ | 试验 | 凹腔燃烧室点火过程 | ||
Micka和Driscoll[ | 试验 | 凹腔燃烧室稳定燃烧模式 | ||
EUGÊNIO RIBEIRO等[ | LES | 三维 | 凹腔燃烧室预混燃烧模式 | |
Fureby和Nilsson[ | LES | 三维 | 凹腔燃烧室稳定燃烧模式 | |
Zhang等[ | 试验 | 后缘突扩凹腔燃烧室燃烧稳定模式 | ||
Cao等[ | RANS/LES | 三维 | 凹腔燃烧室中涡结构动力学 | |
凹腔形状及多凹腔构型 | Zhao等[ | 试验 | 导致燃烧振荡的凹腔参数试验研究 | |
Kannaiyan[ | RANS | 三维 | 不同形状凹腔燃烧室性能 | |
Ma等[ | 试验/RANS | 三维 | 凹腔深度对燃烧室混合与燃烧性能影响 | |
Ruan等[ | LES | 二维 | 回流区特征与凹腔的长深比的关系 | |
Mahto等[ | RANS | 二维 | 凹腔参数优化 | |
Landsberg等[ | 试验/RANS | 三维 | 前壁倾斜凹腔性能对比 | |
Dhankarghare等[ | RANS | 二维 | 支板腔与壁面凹腔性能对比 | |
Li等[ | RANS | 三维 | 多凹腔串联对混合效率的影响 | |
Mecklem等[ | RANS | 二维 | 凹腔串联位置对燃烧室性能的影响 | |
Pandey等[ | RANS | 二维/三维 | 喷注条件对典型并联凹腔燃烧室性能的影响 | |
Choubey和Pandey[ | RANS | 二维 | 入口条件对典型并联凹腔燃烧室性能的影响 | |
Qin等[ | 试验 | 非对称并联凹腔燃烧室点火与爆轰特性 | ||
喷注方式 | Wang等[ | 试验/LES | 三维 | 凹腔上游喷氢燃烧室的燃烧特性 |
Jiang等[ | RANS | 三维 | 凹腔后缘高度和喷注方式的影响 | |
Sitaraman等[ | AMR | 三维 | 凹腔不同喷注位置对火焰稳定的影响 | |
Choubey等[ | RANS | 二维 | 凹腔底壁喷注燃烧室燃烧特性 | |
Cao等[ | 混合RANS/LES | 三维 | 凹腔燃烧室不同喷注位置的燃烧特性 | |
其他因素对凹腔性能的影响 | Morales等[ | 试验 | 平均压力梯度对凹腔燃烧室性能的影响 | |
Jia等[ | 试验 | 燃料射流压差对凹腔燃烧室性能的影响 | ||
DAI 和YAN[ | RANS | 三维 | 流动速度梯度对凹腔燃烧室性能的影响 | |
文献[ | 试验 | MCGA等离子体增强燃料点火和燃烧 |
表 3
支板-凹腔组合装置研究的详细信息[6-7,86,89-93,95]
研究内容 | 代表论文 | 研究方法 | 模型维数 | 研究目的 |
---|---|---|---|---|
增混稳焰机理 | 赵延辉[ | 试验及混合RANS/LES | 三维 | 支板-凹腔燃烧室流场结构 |
黄志伟[ | LES | 三维 | 点火和火焰建立过程中回流区内的能量聚散 | |
Suneetha等[ | RANS | 二维 | 流动条件对燃烧室流动物理特性的影响 | |
Yu等[ | 试验 | 支板-驻涡凹腔燃烧室点火和火焰传播性能 | ||
陈兴良等[ | RANS | 三维 | 支板-凹腔组合稳焰机制 | |
刘特特[ | RANS | 二维 | 凹腔长深比及位置对燃烧室性能影响 | |
几何形状及多支板或凹腔组合 | Suneetha等[ | RANS | 二维 | 单支板双凹腔增混稳燃性能 |
Suneetha 等[ | RANS | 二维 | 支板形状对支板-凹腔燃烧室性能的影响 | |
Suneetha等[ | RANS | 二维 | 双支板单凹腔增混稳燃性能 | |
Lakka 等[ | RANS | 二维 | 凹腔形状对支板-凹腔燃烧室性能的影响 | |
Kireeti等[ | RANS | 二维 | 多支板多凹腔组合构型提升燃烧室性能 | |
Kireeti等[ | RANS | 二维 | 喷氢气压力对三支板四凹腔燃烧室性能影响 | |
Kireeti等[ | RANS | 二维 | 四支板-凹腔与三支板-凹腔性能对比 | |
文献[ | RANS | 二维 | 非对称并联凹腔位置对支板燃烧室性能影响 | |
喷注方式 | Yarasai等[ | RANS | 三维 | 对比不同支板喷孔形状混合和燃烧特性 |
Miao等[ | 试验 | 燃烧室空气辅助喷注提升点火和火焰传播性能 | ||
文献[ | LES | 二维 | 空气节流对支板-凹腔燃烧室性能的影响 | |
Du等[ | 试验 | 空气节流对支板-凹腔燃烧室点火性能的影响 | ||
Liu等[ | RANS | 三维 | RBCC燃烧室模态转换动态特性研究 |
1 | 王振国, 梁剑寒, 丁猛, 等. 高超声速飞行器动力系统研究进展[J]. 力学进展, 2009, 39(6): 716-739. |
WANG Z G, LIANG J H, DING M, et al. A review on hypersonic airbreathing propulsion system[J]. Advances in Mechanics, 2009, 39(6): 716-739 (in Chinese). | |
2 | 黄伟, 罗世彬, 王振国. 临近空间高超声速飞行器关键技术及展望[J]. 宇航学报, 2010, 31(5): 1259-1265. |
HUANG W, LUO S B, WANG Z G. Key techniques and prospect of near-space hypersonic vehicle[J]. Journal of Astronautics, 2010, 31(5): 1259-1265 (in Chinese). | |
3 | ABDULRAHMAN G A Q, QASEM N A A, IMTEYAZ B, et al. A review of aircraft subsonic and supersonic combustors[J]. Aerospace Science and Technology, 2023, 132: 108067. |
4 | SUSHEEL K, KRISHNA M P, KAUSHAL K S. Recent developments in technological innovations in scramjet engines: A review[J]. Materials Today: Proceedings, 2021, 45(P7): 6874-6881. |
5 | SAM L, IDITHSAJ P T, NAIR P P, et al. Prospects for scramjet engines in reusable launch applications: A review[J]. International Journal of Hydrogen Energy, 2023, 48(92): 36094-36111. |
6 | 陈兴良, 景婷婷, 朱韶华, 等. 支板/凹腔组合稳焰器耦合机制研究[J]. 推进技术, 2022, 43(11): 198-207. |
CHEN X L, JING T T, ZHU S H, et al. Coupling mechanism of strut/cavity combined flame stabilizer[J]. Journal of Propulsion Technology, 2022, 43(11): 198-207 (in Chinese). | |
7 | 黄志伟. 超声速来流下的动态燃烧机理研究[D]. 西安: 西北工业大学, 2018. |
HUANG Z W. Investigation on the mechanisms of combustion dynamics under supersonic inflow conditions[D]. Xi’an: Northwestern Polytechnical University, 2018. (in Chinese). | |
8 | HUANG W, DU Z B, YAN L, et al. Supersonic mixing in airbreathing propulsion systems for hypersonic flights[J]. Progress in Aerospace Sciences, 2019, 109: 100545. |
9 | 周燕梅, 吴继平, 黄伟. 超声速气流中的典型混合增强方法[J]. 航空兵器, 2023, 30(2): 108-119. |
ZHOU Y M, WU J P, HUANG W. Typical mixing enhancement approaches in supersonic crossflow[J]. Aero Weaponry, 2023, 30(2): 108-119 (in Chinese). | |
10 | BORDOLOI N, SHARMA D, SARKEN K, et al. A review on the flame holding mechanisms used for the development of scramjet engines[J]. Materials Today: Proceedings, 2021, 45: 7023-7030. |
11 | SUNEETHA L, RANDIVE P, PANDEY K M. Advances in flame stabilization process on a dual mode scramjet-A review[J]. Materials Today: Proceedings, 2019, 18: 104-108. |
12 | GUERRA R, WAIDMANN W, LAIBLE C. An experimental investigation of the combustion of a hydrogen jet injected parallel in a supersonic air stream: AIAA-1991-5102[R]. Reston: AIAA, 1991. |
13 | 刘昊, 张蒙正, 豆飞龙. 超燃冲压发动机支板研究综述[J]. 火箭推进, 2016, 42(5): 74-81. |
LIU H, ZHANG M Z, DOU F L. Research on strut of scramjet engine[J]. Journal of Rocket Propulsion, 2016, 42(5): 74-81 (in Chinese). | |
14 | CHANG J T, ZHANG J L, BAO W, et al. Research progress on strut-equipped supersonic combustors for scramjet application[J]. Progress in Aerospace Sciences, 2018, 103: 1-30. |
15 | 张军龙, 常军涛, 王瑄, 等. 基于支板稳燃的超声速火焰特性研究进展[J]. 空气动力学学报, 2020, 38(3): 577-592. |
ZHANG J L, CHANG J T, WANG X, et al. Recent research progress on flame characteristics in strut-equipped scramjet combustor[J]. Acta Aerodynamica Sinica, 2020, 38(3): 577-592 (in Chinese). | |
16 | LI X, PAN Y, LIU C Y, et al. Investigation on the effect of the expansion angle in the strut-based supersonic combustor[J]. Aerospace Science and Technology, 2023, 133: 108095. |
17 | PINTO R S, SREE RENGANATHAN T, ANSARI S M D H, et al. Effects of stagnation temperature on hysteresis in flame stabilization in a hydrogen-fueled strut-stabilized supersonic combustor[J]. International Journal of Hydrogen Energy, 2023, 48(84): 32982-32994. |
18 | YUAN M C, WANG P, ZHANG Y, et al. Large eddy simulation of flame and thermal-acoustic characteristics in a strut-based scramjet with dynamic thickened flame model[J]. Case Studies in Thermal Engineering, 2023, 41: 102560. |
19 | SINGH A, MUKHOPADHYAY S. Effect of strut profile, angled injection, and blunting of leading edge on mixing of supersonic hydrogen-air streams[J]. International Journal of Hydrogen Energy, 2023, 48(3): 1175-1188. |
20 | ZHANG L, SHENG Z Q, DAN Y, et al. Scramjet combustion with bumpy struts[J]. Aerospace Science and Technology, 2023,140: 108462. |
21 | ZHANG J C, WANG Z G, LIU C Y, et al. Computational realization of turbulent combustion in a scramjet combustor stabilized by a lobed strut[J]. International Journal of Hydrogen Energy, 2023, 48(10): 4073-4086. |
22 | GERLINGER P, STOLL P, KINDLER M, et al. Numerical investigation of mixing and combustion enhancement in supersonic combustors by strut induced streamwise vorticity[J]. Aerospace Science and Technology, 2008, 12(2): 159-168. |
23 | 张宇杰. 支板发动机引射模态混合增强特性研究[D]. 长沙: 国防科技大学, 2012. |
ZHANG Y J. Investigation of the mixing enhancement in ejector mode of strut-jet engine[D].Changsha: National University of Defense Technology, 2012 (in Chinese). | |
24 | PRANAYKUMAR S, MENGU D, PRAKASH A. Effect of crossflow impinging type throttling mechanism on combustion characteristics of a strut-based scramjet combustor[J]. Aerospace Science and Technology, 2023, 142: 108648. |
25 | 黄伟, 杜兆波. 超声速流动中燃料混合增强方法研究进展[J]. 航空兵器, 2020, 27(4): 1-10. |
HUANG W, DU Z B. Progress in research on mixing enhancement approaches in supersonic crossflow[J]. Aero Weaponry, 2020, 27(4): 1-10 (in Chinese). | |
26 | LI L Y, RONG C J, HU S Y, et al. Intelligent variable strut for combustion performance optimization of a wide-range scramjet engine[J]. International Journal of Hydrogen Energy, 2024, 49: 1-13. |
27 | NAIR P P, NARAYANAN V, SURYAN A. Combustion efficiency improvement for scramjet combustor with strut based flame stabilizer using passive techniques[J]. International Journal of Hydrogen Energy, 2021, 46(80): 40054-40072. |
28 | NAIR P P, SURYAN A, NARAYANAN V. Modal analysis of mixing characteristics in scramjet combustor with passive struts[J]. International Journal of Hydrogen Energy, 2022, 47(81): 34656-34675. |
29 | CHOUBEY G, PANDEY K M. Effect of variation of angle of attack on the performance of two-strut scramjet combustor[J]. International Journal of Hydrogen Energy, 2016, 41(26): 11455-11470. |
30 | CHOUBEY G, PANDEY K M. Effect of different strut+wall injection techniques on the performance of two-strut scramjet combustor[J]. International Journal of Hydrogen Energy, 2017, 42(18): 13259-13275. |
31 | CHOUBEY G, SOLANKI M, PATEL O, et al. Effect of different strut design on the mixing performance of H2 fueled two-strut based scramjet combustor[J]. Fuel, 2023, 351: 128972. |
32 | PU C, GUO G M, HAN J L, et al. Effect of jet schemes of the double-nozzle strut injector on mixing efficiency of air and hydrogen for a scramjet combustor[J]. International Journal of Hydrogen Energy, 2022, 47(53): 22633-22649. |
33 | PU C, GUO G M, HAN J L, et al. Influence of flow control schemes of the three-strut injector on the mixing efficiency and total pressure loss for a scramjet combustor[J]. International Journal of Hydrogen Energy, 2023, 48(94): 36972-36986. |
34 | QIU H C, ZHANG J L, GAO J, et al. Research on combustion performance optimization in scramjet combustor with strut/wall combined fuel injection scheme[J]. Aerospace Science and Technology, 2021, 109: 106376. |
35 | TIAN H M, ZHANG J L, QIU H C, et al. Research on influence of oxygen on flow/combustion characteristics in a scramjet combustor equipped with an O2-pilot strut[J]. Acta Astronautica, 2023, 212: 541-555. |
36 | QUAN F X, CHANG J T, KONG C, et al. Research on mixing characteristics of scramjet combustor equipped with strut injector[J]. Applied Thermal Engineering, 2024, 236: 121527. |
37 | 李宁, 李旭昌, 张涵, 等. 超声速燃烧火焰稳定技术及其发展综述[J]. 飞航导弹, 2014(5): 60-67. |
LI N, LI X C, ZHANG H, et al. Summary of supersonic combustion flame stabilization technology and its development[J]. Aerodynamic Missile Journal, 2014(5): 60-67 (in Chinese). | |
38 | MECKLEM S A, LANDSBERG W O, CURRAN D, et al. Combustion enhancement via tandem cavities within a Mach 8 scramjet combustor[J]. Aerospace Science and Technology, 2022, 124: 107551. |
39 | BAURLE R A. Hybrid reynolds-averaged/large-eddy simulation of a scramjet cavity flameholder[J]. AIAA Journal, 2017, 55(2): 544-560. |
40 | WANG H B, WANG Z G, SUN M B, et al. Combustion modes of hydrogen jet combustion in a cavity-based supersonic combustor[J]. International Journal of Hydrogen Energy, 2013, 38(27): 12078-12089. |
41 | CAI Z, WANG T Y, SUN M B. Review of cavity ignition in supersonic flows[J]. Acta Astronautica, 2019, 165: 268-286. |
42 | CHOUBEY G, DEVARAJAN Y, HUANG W, et al. Recent advances in cavity-based scramjet engine- A brief review[J]. International Journal of Hydrogen Energy, 2019, 44(26): 13895-13909. |
43 | HAMMACK S D, OMBRELLO T M. Spatio-temporal evolution of cavity ignition in supersonic flow[J]. Proceedings of the Combustion Institute, 2021, 38(3): 3845-3852. |
44 | MICKA D J, DRISCOLL J F. Combustion characteristics of a dual-mode scramjet combustor with cavity flameholder[J]. Proceedings of the Combustion Institute, 2009, 32(2): 2397-2404. |
45 | EUGÊNIO RIBEIRO F H, BOUKHARFANE R, MURA A. Highly-resolved large-eddy simulations of combustion stabilization in a scramjet engine model with cavity flameholder[J]. Computers & Fluids, 2020, 197: 104344. |
46 | FUREBY C, NILSSON T. Large eddy simulation of cavity stabilized ramjet combustion[J]. Aerospace Science and Technology, 2023, 141: 108503. |
47 | CAO D G, BROD H E, YOKEV N, et al. Vortex dynamics in different combustion regions of a cavity-based scramjet[J]. Proceedings of the Combustion Institute, 2023, 39(3): 3147-3156. |
48 | KANNAIYAN K. Computational study of the effect of cavity geometry on the supersonic mixing and combustion of ethylene[J]. Journal of Computational Science, 2020, 47: 101243. |
49 | MA G W, SUN M B, LI F, et al. Effect of fuel injection distance and cavity depth on the mixing and combustion characteristics of a scramjet combustor with a rear-wall-expansion cavity[J]. Acta Astronautica, 2021, 182: 432-445. |
50 | ZHAO G Y, SUN M B, SONG X L, et al. Experimental investigations of cavity parameters leading to combustion oscillation in a supersonic crossflow[J]. Acta Astronautica, 2019, 155: 255-263. |
51 | RUAN J L, DOMINGO P, RIBERT G. Analysis of combustion modes in a cavity based scramjet[J]. Combustion and Flame, 2020, 215: 238-251. |
52 | MAHTO N K, CHOUBEY G, SUNEETHA L, et al. Effect of variation of length-to-depth ratio and Mach number on the performance of a typical double cavity scramjet combustor[J]. Acta Astronautica, 2016, 128: 540-550. |
53 | ZHANG Y X, WANG Z G, SUN M B, et al. Hydrogen jet combustion in a scramjet combustor with the rearwall-expansion cavity[J]. Acta Astronautica, 2018, 144: 181-192. |
54 | LANDSBERG W O, CURRAN D, VEERARAGAVAN A. Experimental flameholding performance of a scramjet cavity with an inclined front wall[J]. Aerospace Science and Technology, 2022, 126: 107622. |
55 | DHANKARGHARE A A, JAYACHANDRAN T, MURUGANANDAM T M. Comparative investigation of strut cavity and wall cavity in supersonic flows[J]. Aerospace Science and Technology, 2022, 124: 107520. |
56 | DHANKARGHARE A A, JAYACHANDRAN T, MURUGANANDAM T M. A numerical investigation of flow dynamics inside wall cavity and strut cavity placed in supersonic airflows[J]. Physics of Fluids, 2023, 35(1), 016102. |
57 | LI Z X, MANH T D, BARZEGAR GERDROODBARY M, et al. Computational investigation of multi-cavity fuel injection on hydrogen mixing at supersonic combustion chamber[J]. International Journal of Hydrogen Energy, 2020, 45(15): 9077-9087. |
58 | PANDEY K M, CHOUBEY G, AHMED F, et al. Effect of variation of hydrogen injection pressure and inlet air temperature on the flow-field of a typical double cavity scramjet combustor[J]. International Journal of Hydrogen Energy, 2017, 42(32): 20824-20834. |
59 | CHOUBEY G, PANDEY K M. Effect of variation of inlet boundary conditions on the combustion flow-field of a typical double cavity scramjet combustor[J]. International Journal of Hydrogen Energy, 2018, 43(16): 8139-8151. |
60 | QIN F, CHEN X L, ZHU S H, et al. Experimental study on ignition and blowout characteristics of dual combined flame stabilizers in scramjet[J]. Aerospace Science and Technology, 2023, 142: 108634. |
61 | CAI Z, SUN M B, WANG H B, et al. Experimental investigation on ignition schemes of partially covered cavities in a supersonic flow[J]. Acta Astronautica, 2016, 121: 88-94. |
62 | DAN Y, SHENG Z Q, ZHANG L, et al. Effects of lifted fuel injection using an upstream ramp of a cavity on scramjet combustion[J]. Aerospace Science and Technology, 2023, 142: 108651. |
63 | SHI L, TIAN Z Y, DAI C W, et al. Rocket-augmented flame stabilization and combustion in a cavity-based scramjet[J]. Aerospace Science and Technology, 2023, 139: 108375. |
64 | LIU M J, SUN M B, YANG D N, et al. Mixing and combustion characteristics in a scramjet combustor with different distances between cavity and backward-facing step[J]. Chinese Journal of Aeronautics, 2023, 36(7): 400-411. |
65 | WANG H B, WANG Z G, SUN M B, et al. Combustion characteristics in a supersonic combustor with hydrogen injection upstream of cavity flameholder[J]. Proceedings of the Combustion Institute, 2013, 34(2): 2073-2082. |
66 | JIANG Y, POOZESH A, MARASHI S M, et al. Effect of cavity back height on mixing efficiency of hydrogen multi-jets at supersonic combustion chamber[J]. International Journal of Hydrogen Energy, 2020, 45(51): 27828-27836. |
67 | SITARAMAN H, YELLAPANTULA S, HENRY DE FRAHAN M T, et al. Adaptive mesh based combustion simulations of direct fuel injection effects in a supersonic cavity flame-holder[J]. Combustion and Flame, 2021, 232: 111531. |
68 | GAO L, YU X, PENG J B, et al. Flame characteristics of a cavity-based scramjet combustor using OH-PLIF and feature extraction[J]. International Journal of Hydrogen Energy, 2022, 47(47): 20662-20675. |
69 | CHOUBEY G, SOLANKI M, BHATT T, et al. Numerical investigation on a typical scramjet combustor using cavity floor H2 fuel injection strategy[J]. Acta Astronautica, 2023, 202: 373-385. |
70 | CAO D G, BROD H E, YOKEV N, et al. Flame stabilization and local combustion modes in a cavity-based scramjet using different fuel injection schemes[J]. Combustion and Flame, 2021, 233: 111562. |
71 | ZHU Z X, HUANG Y K, ZHANG H W, et al. Combustion performance in a cavity-based combustor under subatmospheric pressure[J]. Fuel, 2021, 302: 121115. |
72 | MORALES A J, SMERINA D M, THORNTON M R, et al. Mean pressure gradient effects on the performance of ramjet cavity stabilized flames[J]. Aerospace Science and Technology, 2023, 141: 108533. |
73 | YUAN M C, WANG P, ZHANG Y, et al. Assessing the effect of air-throttling on ignition dynamics in a hydrogen-fueled scramjet under various fuel-injection strategies using LES[J]. Acta Astronautica, 2023, 212: 111-122. |
74 | CAI Z, ZHU J J, SUN M B, et al. Ignition processes and modes excited by laser-induced plasma in a cavity-based supersonic combustor[J]. Applied Energy, 2018, 228: 1777-1782. |
75 | LI J, TANG J F, ZHANG H R, et al. Dual-frequency excited plasma enhanced ignition in a supersonic combustion chamber[J]. Aerospace Science and Technology, 2022, 129: 107849. |
76 | OMBRELLO T M, CARTER C D, TAM C J, et al. Cavity ignition in supersonic flow by spark discharge and pulse detonation[J]. Proceedings of the Combustion Institute, 2015, 35(2): 2101-2108. |
77 | MIAO H F, ZHANG Z B, HE Y Y, et al. Ignition enhancement of liquid kerosene by a novel high-energy spark igniter in scramjet combustor at Mach 4 flight condition[J]. Aerospace Science and Technology, 2023, 139: 108397. |
78 | FENG R, HUANG Y H, ZHU J J, et al. Ignition and combustion enhancement in a cavity-based supersonic combustor by a multi-channel gliding arc plasma[J]. Experimental Thermal and Fluid Science, 2021, 120: 110248. |
79 | FENG R, SUN M B, WANG H B, et al. Experimental investigation of flameholding in a cavity-based scramjet combustor by a multi-channel gliding arc[J]. Aerospace Science and Technology, 2022, 121: 107381. |
80 | TIAN Y F, ZHU J J, SUN M B, et al. Enhancement of blowout limit in a Mach 2.92 cavity-based scramjet combustor by a gliding arc discharge[J]. Proceedings of the Combustion Institute, 2023, 39(4): 5697-5705. |
81 | LUO T G, ZHU J J, SUN M B, et al. MCGA-assisted ignition process and flame propagation of a scramjet at Mach 2.0[J]. Chinese Journal of Aeronautics, 2023, 36(7): 378-387. |
82 | JIA D P, YANG J, LIU C Y, et al. Dynamic response characteristics of flame during condition transition in a cavity-based scramjet combustor[J]. Acta Astronautica, 2023, 211: 200-207. |
83 | DAI J, YAN Y D. Effect of non-uniform incoming flow on the mixing enhancement in a scramjet cavity combustor[J]. International Journal of Hydrogen Energy, 2024, 50: 758-771. |
84 | LIU X, LI P B, LI F, et al. Effect of kerosene injection states on mixing and combustion characteristics in a cavity-based supersonic combustor[J]. Chinese Journal of Aeronautics, 2024, 37(4): 308-320. |
85 | YANG K, PAN Y, WANG Z G, et al. Experimental investigation of the ignition characteristics of vaporized RP-3 kerosene in supersonic flow[J]. Acta Astronautica, 2020, 174: 1-10. |
86 | YANG K, WANG N, PAN Y, et al. Effect of cavity arrangement on the ignition mode of vaporized kerosene in supersonic flow[J]. Aerospace Science and Technology, 2021, 113: 106691. |
87 | 张新宇, 陈立红, 顾洪斌. 超燃冲压模型发动机中支板/凹腔一体化稳焰机构[C]∥2003全国流体力学青年研讨会论文集. 北京:中国空气动力学会,2003. |
88 | 赵延辉. 基于凹腔—支板火焰稳定器的超声速燃烧室实验与数值模拟研究[D]. 长沙: 国防科技大学, 2011. |
ZHAO Y H. Numerical simulation and experimental research on scramjet combustor based on cavity-strut flameholder[D].Changsha: National University of Defense Technology, 2011. (in Chinese) | |
89 | SUNEETHA L, RANDIVE P, PANDEY K M. Numerical investigation on mixing behavior of fuels inreacting and non-reacting flow condition of a cavity-strut based scramjet combustor[J]. International Journal of Hydrogen Energy, 2019, 44(31): 16718-16734. |
90 | YU W B, YUE C, FAN Y X, et al. Influence of strut on trapped vortex cavity flameholder: Ignition and flame propagation performances[J]. Acta Astronautica, 2023, 204: 132-142. |
91 | 刘特特. 支板-凹腔燃烧室内RP-3裂解产物超声速燃烧数值研究[D]. 大连: 大连理工大学, 2021. |
LIU T T. Numerical study on supersonic combustion of RP-3 pyrolysis products with strut and cavity combination[D]. Dalian: Dalian University of Technology, 2021 (in Chinese). | |
92 | SUNEETHA L, RANDIVE P, PANDEY K M. Numerical investigation on implication of dual cavity on combustion characteristics in strut based scramjet combustor[J]. International Journal of Hydrogen Energy, 2019, 44(60): 32080-32094. |
93 | SUNEETHA L, RANDIVE P, PANDEY K M. Numerical investigation on implication of strut profile on combustion characteristics in a cavity based scramjet combustor[J]. Acta Astronautica, 2020, 170: 623-636. |
94 | SUNEETHA L, RANDIVE P, PANDEY K M. Implication of diamond shaped dual strut on combustion characteristics in a cavity-based scramjet combustor[J]. International Journal of Hydrogen Energy, 2020, 45(35): 17562-17574. |
95 | SUNEETHA L, RANDIVE P, PANDEY K M. Numerical investigation on implications of four strut injectors on combustion characteristics of a Doubly-Dual cavity-based scramjet combustor[J]. International Journal of Hydrogen Energy, 2020, 45(56): 32128-32144. |
96 | LAKKA S, RANDIVE P, PANDEY K M. Implication of geometrical configuration of cavity on combustion performance in a strut-based scramjet combustor[J]. Acta Astronautica, 2021, 178: 793-804. |
97 | KIREETI S K, RAVIKIRAN S G, KUMAR G S. Numerical investigation on implication of innovative hydrogen strut in comparison with multi strut injector on performance and combustion characteristics in a scramjet combustor[J]. International Journal of Hydrogen Energy, 2022, 47(99): 41932-41946. |
98 | KIREETI S K, RAVIKIRAN SASTRY G, GUGULOTHU S K, et al. Numerical investigations on the implication of hydrogen fuel jet injection pressure on the performance characteristics in a multi-strut in a double-dual cavity-based scramjet combustor[J]. Fuel, 2022, 324: 124528. |
99 | KIREETI S K, RAVI KIRAN SASTRY G, GUGULOTHU S K, et al. Comparison of combustion characteristics of four strut injectors with that of three strut injectors by numerically investigating doubly-dual cavity-based scramjet combustor[J]. Sustainable Energy Technologies and Assessments, 2022, 53: 102759. |
100 | RAJESH A C, JEYAKUMAR S, JAYARAMAN K, et al. Steady and unsteady flow characteristics of dual cavity in strut injection scramjet combustor[J]. International Journal of Hydrogen Energy, 2023, 48(72): 28174-28186. |
101 | RAJESH A C, JEYAKUMAR S, KANDASAMY J, et al. The implications of dual cavity location in a strut-mounted scramjet combustor[J]. International Communications in Heat and Mass Transfer, 2023, 145(PB): 106855. |
102 | YARASAI S S, RAVI D, YOGANAND S, et al. Numerical investigation on the performance and combustion characteristics of a cavity based scramjet combustor with novel strut injectors[J]. International Journal of Hydrogen Energy, 2023, 48(14): 5681-5695. |
103 | MIAO J J, FAN Y X, WU W Q, et al. Effect of air-assistant on ignition and flame-holding characteristics in a cavity-strut based combustor[J]. Applied Energy, 2021, 283: 116307. |
104 | SUBHASIS C, PITAMBAR R. LES study on the effect of cavity configuration on combustion characteristics of a scramjet combustor with air-throttling[J]. International Journal of Hydrogen Energy, 2021, 46(43): 22534-22553. |
105 | CHAKRAVARTHY S, RANDIVE P, PATI S. Implication of air-throttling on combustion characteristics of cavity-strut based scramjet combustor[J]. Acta Astronautica, 2021, 188: 171-184. |
106 | DU G M, TIAN Y, LE J L, et al. Experimental investigation of effects of air throttling on combustion characteristics in a kerosene-fueled scramjet at Ma7[J]. Acta Astronautica, 2023, 203: 447-453. |
107 | LIU Y S, XUE R, LIU J L, et al. Numerical study on the dynamic process of ramjet/scramjet mode transition in the integrated RBCC full flow path through multistage fuel injection strategies[J]. International Communications in Heat and Mass Transfer, 2023, 146: 106857. |
[1] | 乔竑玮, 梁剑寒, 张林, 孙明波, 陈玉俏. 超声速燃烧中的概率密度函数方法研究进展[J]. 航空学报, 2024, 45(8): 28802-028802. |
[2] | 刘小勇, 王明福, 刘建文, 任鑫, 张轩. 超燃冲压发动机研究回顾与展望[J]. 航空学报, 2024, 45(5): 529878-529878. |
[3] | 纪鉴恒, 蔡尊, 王泰宇, 孙明波, 王振国. 宽速域超燃冲压发动机流动燃烧过程研究进展[J]. 航空学报, 2024, 45(3): 28696-028696. |
[4] | 于江飞, 汤涛, 闫博, 汪洪波, 杨揖心, 熊大鹏, 孙明波. 马赫数6飞行条件圆截面超燃冲压发动机流动燃烧特征分析[J]. 航空学报, 2024, 45(14): 129575-129575. |
[5] | 吴忧, 陈兵, 杨庆春, 徐旭. 碳氢燃料超燃冲压发动机热非平衡效应[J]. 航空学报, 2024, 45(11): 529399-529399. |
[6] | 汤涛, 于江飞, 黄玉辉, 汪洪波, 孙明波, 赵国焱, 熊大鹏, 王振国. 圆截面超声速燃烧室乙烯燃料喷注火焰结构和模式分析[J]. 航空学报, 2024, 45(11): 528880-528880. |
[7] | 赵翔, 夏智勋, 方传波, 马立坤, 李潮隆, 段一凡. 固体火箭超燃冲压发动机理论性能分析[J]. 航空学报, 2023, 44(5): 126971-126971. |
[8] | 宋家辉, 许爱国, 苗龙, 廖煜淦, 梁福文, 田丰, 聂明卿, 王宁飞. 激波/平板层流边界层干扰熵增特性[J]. 航空学报, 2023, 44(21): 528520-528520. |
[9] | 夏智勋, 冯运超, 马立坤, 陈斌斌, 李潮隆, 杨鹏年, 刘延东, 屈影, 赵康淳, 赵李北, 任鹏浩. 固体火箭超燃冲压发动机燃烧技术研究进展[J]. 航空学报, 2023, 44(15): 528793-528793. |
[10] | 孙明波, 朱家健, 罗天罡, 李沁远, 田轶夫, 万明罡, 孙永超. 非稳态超声速燃烧电激励调控技术研究进展[J]. 航空学报, 2023, 44(15): 528787-528787. |
[11] | 李潮隆, 夏智勋, 马立坤, 赵翔, 罗振兵, 段一凡. 固体火箭超燃冲压发动机性能试验[J]. 航空学报, 2022, 43(12): 126075-126075. |
[12] | 陈以勒, 俞凯凯, 徐惊雷. 几何尺寸约束的超燃冲压发动机推力喷管设计[J]. 航空学报, 2021, 42(6): 124259-124259. |
[13] | 靳旭红, 黄飞, 程晓丽, 苏鹏辉. Maxwell气固相互作用模型对稀薄高超声速凹腔绕流流动特征和热环境的影响[J]. 航空学报, 2021, 42(3): 124118-124118. |
[14] | 栾芸, 贺菲, 王建华. 飞行器鼻锥凹腔-发散组合冷却数值模拟[J]. 航空学报, 2021, 42(2): 623937-623937. |
[15] | 禹旻, 杨武兵, 沈清. 超声速尾迹-剪切流的混合增强[J]. 航空学报, 2021, 42(12): 625876-625876. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
版权所有 © 航空学报编辑部
版权所有 © 2011航空学报杂志社
主管单位:中国科学技术协会 主办单位:中国航空学会 北京航空航天大学