收稿日期:
2023-04-17
修回日期:
2023-04-27
接受日期:
2023-05-20
出版日期:
2023-08-15
发布日期:
2023-05-31
通讯作者:
彭皓阳
E-mail:penghaoyang@nudt.edu.cn
基金资助:
Weidong LIU, Haoyang PENG(), Shijie LIU, Hailong ZHANG, Xueqiang YUAN
Received:
2023-04-17
Revised:
2023-04-27
Accepted:
2023-05-20
Online:
2023-08-15
Published:
2023-05-31
Contact:
Haoyang PENG
E-mail:penghaoyang@nudt.edu.cn
Supported by:
摘要:
爆震燃烧是一种激波与反应面高度耦合并以超声速传播的燃烧方式,基于爆震燃烧构建的动力推进装置具有理论性能优势,是未来空天领域重要的发展方向。连续旋转爆震发动机是爆震燃烧的一种应用形式,具有自适应能力强、发动机长度短、推力性能高等优势,有望推动航空航天动力技术的跨越发展。以经典爆震理论为切入点,总结了旋转爆震发动机相关的基础研究问题及旋转爆震发动机工程应用的研究进展,回顾了国防科技大学在旋转爆震领域的发展历程,最后展望了旋转爆震发动机未来发展。
中图分类号:
刘卫东, 彭皓阳, 刘世杰, 张海龙, 袁雪强. 旋转爆震燃烧及应用研究进展[J]. 航空学报, 2023, 44(15): 528875-528875.
Weidong LIU, Haoyang PENG, Shijie LIU, Hailong ZHANG, Xueqiang YUAN. Research Progresses of rotating detonation combustion and its application[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(15): 528875-528875.
1 | LEE J H S. The detonation phenomenon[M]. Cambridge: Cambridge University Press, 2008. |
2 | AUSTIN J M. The role of instability in gaseous detonation[D]. Pasadena: California Institute of Technology, 2003. |
3 | ORAN E S, CHAMBERLAIN G, PEKALSKI A. Mechanisms and occurrence of detonations in vapor cloud explosions[J]. Progress in Energy and Combustion Science, 2020, 77: 100804. |
4 | SHCHELKIN K I. Influence of tube roughness on the formation and detonation propagation in gas[J]. Journal of Experimental and Theoretical physics, 1940. |
5 | ZELDOVICH Y. To the question of energy use of detonation combustion[J]. Journal of Propulsion and Power, 2006, 22(3): 588-592. |
6 | WOLAŃSKI P. Detonative propulsion[J]. Proceedings of the Combustion Institute, 2013, 34(1): 125-158. |
7 | KAILASANATH K. Review of propulsion applications of detonation waves[J]. AIAA Journal, 2000, 38(9): 1698-1708. |
8 | HEISER W H, PRATT D T. Thermodynamic cycle analysis of pulse detonation engines[J]. Journal of Propulsion and Power, 2002, 18(1): 68-76. |
9 | WINTENBERGER E, SHEPHERD J E. Model for the performance of airbreathing pulse-detonation engines[J]. Journal of Propulsion and Power, 2006, 22(3): 593-603. |
10 | VOITSEKHOVSKIY B V. Stationary detonation[J]. doklady akademii Nauk SSSr, 1959, 129(6): 1254-&. |
11 | VOITSEKHOVSKII B V. Stationary spin detonation[J]. Soviet Journal of Applied Mechanics and Technical Physics, 1960, 3: 157-164. |
12 | NLCHOLLS J A, CULLEN R E, RAGLAND K W. Feasibility studies of a rotating detonation wave rocket motor[J]. Journal of Spacecraft and Rockets, 1966, 3(6): 893-898. |
13 | BYKOVSKII F A, VEDERNIKOV E F. Continuous detonation combustion of an annular gas-mixture layer[J]. Combustion, Explosion and Shock Waves, 1996, 32(5): 489-491. |
14 | BYKOVSKII F A, ZHDAN S A, VEDERNIKOV E F. Continuous spin detonation of fuel-air mixtures[J]. Combustion, Explosion and Shock Waves, 2006, 42(4): 463-471. |
15 | BYKOVSKII F A, ZHDAN S A, VEDERNIKOV E F. Continuous spin detonations[J]. Journal of Propulsion and Power, 2006, 22(6):1204-1216. |
16 | MA J Z, LUAN M Y, XIA Z J, et al. Recent progress, development trends, and consideration of continuous detonation engines[J]. AIAA Journal, 2020, 58(12): 4976-5035. |
17 | 王兵, 谢峤峰, 闻浩诚, 等. 爆震发动机研究进展[J]. 推进技术, 2021, 42(4): 721-737, 716. |
WANG B, XIE Q F, WEN H C, et al. Research progress of detonation engines[J]. Journal of Propulsion Technology, 2021, 42(4): 721-737, 716 (in Chinese). | |
18 | RAMAN V, PRAKASH S, GAMBA M. Nonidealities in rotating detonation engines[J]. Annual Review of Fluid Mechanics, 2023, 55: 639-674. |
19 | IVANOV V S, FROLOV S M, ZANGIEV A E, et al. Updated conceptual design of hydrogen/ethylene fueled detonation ramjet: Test fires at Mach 1.5, 2.0, and 2.5[J]. Aerospace Science and Technology, 2022, 126: 107602. |
20 | PENG H Y, LIU W D, LIU S J. Ethylene continuous rotating detonation in optically accessible racetrack-like combustor[J]. Combustion Science and Technology, 2019, 191(4): 676-695. |
21 | GAILLARD T, DAVIDENKO D, DUPOIRIEUX F. Numerical optimisation in non reacting conditions of the injector geometry for a continuous detonation wave rocket engine[J]. Acta Astronautica, 2015, 111: 334-344. |
22 | WEISS S, BOHON M D, PASCHEREIT C O, et al. Computational study of reactants mixing in a rotating detonation combustor using compressible RANS[J]. Flow, Turbulence and Combustion, 2020, 105(1): 267-295. |
23 | ATHMANATHAN V, BRAUN J, AYERS Z M, et al. On the effects of reactant stratification and wall curvature in non-premixed rotating detonation combustors[J]. Combustion and Flame, 2022, 240: 112013. |
24 | DRISCOLL R, AGHASI P, GEORGE A ST, et al. Three-dimensional, numerical investigation of reactant injection variation in a H2/air rotating detonation engine[J]. International Journal of Hydrogen Energy, 2016, 41(9): 5162-5175. |
25 | BOENING J A, WHEELER E A, HEATH J D, et al. Rotating detonation engine using a wave generator and controlled mixing[J]. Journal of Propulsion and Power, 2018, 34(6): 1364-1375. |
26 | ANAND V, GEORGE A ST, FARBOS DE LUZAN C, et al. Rotating detonation wave mechanics through ethylene-air mixtures in hollow combustors, and implications to high frequency combustion instabilities[J]. Experimental Thermal and Fluid Science, 2018, 92: 314-325. |
27 | HUANG S Y, LI Y P, ZHOU J, et al. Effects of the pintle injector on H2/air continuous rotating detonation wave in a hollow chamber[J]. International Journal of Hydrogen Energy, 2019, 44(26): 14044-14054. |
28 | HUANG S Y, ZHOU J, LIU S J, et al. Effects of pintle injector on ethylene-air rocket-based continuous rotating detonation[J]. Acta Astronautica, 2019, 164: 311-320. |
29 | ZHANG H L, LIU W D, LIU S J. Research on H2/Air rotating detonation in the hollow chamber with double injection[J]. International Journal of Hydrogen Energy, 2021, 46(44): 23067-23074. |
30 | 马虎, 武晓松, Kindracki Jan, 等. 分开喷注方式下旋转爆震发动机三维数值模拟[J]. 燃烧科学与技术, 2016, 22(1): 9-14. |
MA H, WU X S, KINDRACKI J, et al. Three-dimensional numerical simulation of rotating detonation engine with separate injection[J]. Journal of Combustion Science and Technology, 2016, 22(1): 9-14 (in Chinese). | |
31 | KINDRACKI J. Experimental research on rotating detonation in liquid fuel-gaseous air mixtures[J]. Aerospace Science and Technology, 2015, 43: 445-453. |
32 | HAYASHI A K, TSUBOI N, DZIEMINSKA E. Numerical study on JP-10/air detonation and rotating detonation engine[J]. AIAA Journal, 2020, 58(12): 5078-5094. |
33 | WEN H C, WEI W, FAN W Q, et al. On the propagation stability of droplet-laden two-phase rotating detonation waves[J]. Combustion and Flame, 2022, 244: 112271. |
34 | LIU H, SONG F L, JIN D, et al. Experimental investigation on spray and detonation initiation characteristics of premixed/non-premixed RDE[J]. Fuel, 2023, 331: 125949. |
35 | PENG H Y, LIU W D, LIU S J, et al. The competitive relationship between detonation and deflagration in the inner cylinder-variable continuous rotating detonation combustor[J]. Aerospace Science and Technology, 2020, 107: 106263. |
36 | ANDRUS I Q, KING P I, POLANKA M D, et al. Design of a premixed fuel-oxidizer system to arrest flashback in a rotating detonation engine[J]. Journal of Propulsion and Power, 2017, 33(5): 1063-1073. |
37 | ANAND V, GEORGE A ST, DRISCOLL R, et al. Analysis of air inlet and fuel plenum behavior in a rotating detonation combustor[J]. Experimental Thermal and Fluid Science, 2016, 70: 408-416. |
38 | RANKIN B A, FOTIA M, PAXSON D E, et al. Experimental and numerical evaluation of pressure gain combustion in a rotating detonation engine[C]∥ Proceedings of the 53rd AIAA Aerospace Sciences Meeting. Reston: AIAA, 2015. |
39 | SCHWER D, KAILASANATH K. Feedback into mixture plenums in rotating detonation engines[C]∥ Proceedings of the 50th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. Reston: AIAA, 2012. |
40 | SUN J, ZHOU J, LIU S J, et al. Effects of injection nozzle exit width on rotating detonation engine[J]. Acta Astronautica, 2017, 140: 388-401. |
41 | YAN C A, TENG H H, NG H D. Effects of slot injection on detonation wavelet characteristics in a rotating detonation engine[J]. Acta Astronautica, 2021, 182: 274-285. |
42 | NAPLES A, HOKE J, SCHAUER F. Experimental investigation of a rotating detonation engine injector temporal response[C]∥ 53rd AIAA Aerospace Sciences Meeting. Reston: AIAA, 2015. |
43 | BURR J R, YU K H. Experimental characterization of RDE combustor flowfield using linear channel[J]. Proceedings of the Combustion Institute, 2019, 37(3): 3471-3478. |
44 | BEDICK C, FERGUSON D, STRAKEY P. Characterization of rotating detonation engine injector response using laser-induced fluorescence[J]. Journal of Propulsion and Power, 2019, 35(4): 827-838. |
45 | RANKIN B A, FUGGER C A, RICHARDSON D R, et al. Evaluation of mixing processes in a non-premixed rotating detonation engine using acetone PLIF[C]∥ 54th AIAA Aerospace Sciences Meeting. Reston: AIAA, 2016. |
46 | 王超. 吸气式连续旋转爆震波自持传播机制研究[D]. 长沙: 国防科学技术大学, 2016. |
WANG C. Self-sustaining and propagation mechanism of airbreathing continuous rotating detonation wave[D]. Changsha: National University of Defense Technology, 2016 (in Chinese). | |
47 | WU Q M, LIN Z Y, HUANG X X, et al. Flow characteristics and stability of induced shock waves in the isolator of rotating detonation ramjet under flight Mach number 2.5 conditions[J]. Aerospace Science and Technology, 2023, 133: 108092. |
48 | BARTENEV A M, GELFAND B E. Spontaneous initiation of detonations[J]. Progress in Energy and Combustion Science, 2000, 26(1): 29-55. |
49 | ORAN E S, GAMEZO V N. Origins of the deflagration-to-detonation transition in gas-phase combustion[J]. Combustion and Flame, 2007, 148(1-2): 4-47. |
50 | BRAUN E, DUNN N, LU F. Testing of a continuous detonation wave engine with swirled injection[C]∥ Proceedings of the 48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition. Reston: AIAA, 2010. |
51 | PENG L, WANG D, WU X S, et al. Ignition experiment with automotive spark on rotating detonation engine[J]. International Journal of Hydrogen Energy, 2015, 40(26): 8465-8474. |
52 | XIA Z J, MA H U, GE G Y, et al. Effects of ignition condition on the initiation characteristics of rotating detonation wave in plane-radial structure[J]. Acta Astronautica, 2020, 175: 79-89. |
53 | MA J Z, ZHANG S J, LUAN M Y, et al. Experimental investigation on delay time phenomenon in rotating detonation engine[J]. Aerospace Science and Technology, 2019, 88: 395-404. |
54 | MA Z, ZHANG S J, LUAN M Y, et al. Experimental research on ignition, quenching, reinitiation and the stabilization process in rotating detonation engine[J]. International Journal of Hydrogen Energy, 2018, 43(39): 18521-18529. |
55 | FOTIA M L, HOKE J, SCHAUER F. Study of the ignition process in a laboratory scale rotating detonation engine[J]. Experimental Thermal and Fluid Science, 2018, 94: 345-354. |
56 | ANDERSON W S, HEISTER S D, KAN B, et al. Experimental study of a hypergolically ignited liquid bipropellant rotating detonation rocket engine[J]. Journal of Propulsion and Power, 2020, 36(6): 851-861. |
57 | FUJIWARA T, HISHIDA M, KINDRACKI J, et al. Stabilization of detonation for any incoming Mach numbers[J]. Combustion, Explosion, and Shock Waves, 2009, 45(5): 603-605. |
58 | 刘世杰. 连续旋转爆震波结构、传播模态及自持机理研究[D]. 长沙: 国防科学技术大学, 2012. |
LIU S J. Investigations on the structure, rotating mode and lasting mechanism of continuous rotating detonation wave[D]. Changsha: National University of Defense Technology, 2012 (in Chinese). | |
59 | 周朱林, 刘卫东, 刘世杰, 等. 基于侧向膨胀影响爆震波的自持机理[J]. 航空动力学报, 2013, 28(9): 1967-1974. |
ZHOU Z L, LIU W D, LIU S J, et al. Self-sustaining mechanism of detonation wave influenced by lateral expansion[J]. Journal of Aerospace Power, 2013, 28(9): 1967-1974 (in Chinese). | |
60 | HUANG S Y, ZHOU J, LIU S J, et al. Propagation and flow field analysis of wall-detached continuous rotating detonation wave in a hollow combustor[J]. Combustion and Flame, 2023, 248: 112550. |
61 | ZHONG Y P, WU Y, JIN D, et al. Investigation of rotating detonation fueled by the pre-combustion cracked kerosene[J]. Aerospace Science and Technology, 2019, 95:105480. |
62 | 胡洪波,严宇,张锋, 等. 煤油富燃燃气旋转爆震燃烧实验研究[J]. 推进技术, 2020, 41(4): 881-888. |
HU H B, YAN Y, ZHANG F, et al. Experimental investigation on rotational detonation combustion with fuel-rich gases of kerosene [J]. Journal of Propulsion Technology, 2020, 41(4): 881-888 (in Chinese). | |
63 | PRAKASH S, RAMAN V, LIETZ C F, et al. High fidelity simulations of a methane-oxygen rotating detonation rocket engine[C]∥ AIAA Scitech 2020 Forum. Reston: AIAA, 2020. |
64 | NAKAGAMI S, MATSUOKA K, KASAHARA J, et al. Experimental visualization of the structure of rotating detonation waves in a disk-shaped combustor[J]. Journal of Propulsion and Power, 2016, 33(1): 80-88. |
65 | XIA Z J, MA H, GE G Y, et al. Visual experimental investigation on stable operating process of the plane-radial rotating detonation engine[J]. Aerospace Science and Technology, 2021, 109: 106430. |
66 | LIU S J, LIN Z Y, LIU W D, et al. Experimental realization of H2/air continuous rotating detonation in a cylindrical combustor[J]. Combustion Science and Technology, 2012, 184(9): 1302-1317. |
67 | TANG X M, WANG J P, SHAO Y T. Three-dimensional numerical investigations of the rotating detonation engine with a hollow combustor[J]. Combustion and Flame, 2015, 162(4): 997-1008 |
68 | LIN W, ZHOU J, LIU S J, et al. An experimental study on CH4/O2 continuously rotating detonation wave in a hollow combustion chamber[J]. Experimental Thermal and Fluid Science, 2015, 62: 122-130. |
69 | PENG H Y, LIU W D, LIU S J, et al. Experimental investigations on ethylene-air continuous rotating detonation wave in the hollow chamber with Laval nozzle[J]. Acta Astronautica, 2018, 151: 137-145. |
70 | WANG Y H, LE J L, WANG C, et al. A non-premixed rotating detonation engine using ethylene and air[J]. Applied Thermal Engineering, 2018, 137: 749-757. |
71 | PENG H Y, LIU W D, LIU S J, et al. Realization of methane-air continuous rotating detonation wave[J]. Acta Astronautica, 2019, 164: 1-8. |
72 | HUANG S Y, ZHOU J, LIU S J, et al. Ammonia/oxygen-enriched air continuous rotating detonation in the hollow chamber[J]. Fuel, 2022, 311: 122166. |
73 | PENG H Y, LIU W D, LIU S J, et al. The effect of cavity on ethylene-air continuous rotating detonation in the annular combustor[J]. International Journal of Hydrogen Energy, 2019, 44: 14032-14043. |
74 | PENG H Y, LIU W D, LIU S J, et al. Effects of cavity location on ethylene-air continuous rotating detonation in a cavity-based annular combustor[J]. Combustion Science and Technology, 2021, 193(16): 2761-2782. |
75 | LIU S J, PENG H Y, LIU W D, et al. Effects of cavity depth on the ethylene-air continuous rotating detonation[J]. Acta Astronautica, 2020, 166:1-10. |
76 | PENG H Y, LIU S J, LIU W D, et al. Enhancement of ethylene-air continuous rotating detonation in the cavity-based annular combustor[J]. Aerospace Science and Technology, 2021, 115: 106842. |
77 | HE X J, LIU X Y, WANG J P. On the mechanisms of the multiplicity and bifurcation of detonation waves in 3D rotating detonation engines[J]. Aerospace Science and Technology, 2022, 130: 107874. |
78 | FAN W J, LIU S J, ZHONG S H, et al. Characteristics of ethylene-air continuous rotating detonation in the cavity-based annular combustor[J]. Physics of Fluids, 2023, 35(4): 045142. |
79 | MENG H L, XIAO Q, FENG W K, et al. Air-breathing rotating detonation fueled by liquid kerosene in cavity-based annular combustor[J]. Aerospace Science and Technology, 2022, 122: 107407. |
80 | FENG W K, ZHENG Q, XIAO Q, et al. Effects of cavity length on operating characteristics of a ramjet rotating detonation engine fueled by liquid kerosene[J]. Fuel, 2023, 332: 126129. |
81 | WOLAŃSKI P. Rotating detonation wave stability[C]∥23rd ICDERS. 2011. |
82 | GEORGE A ST, DRISCOLL R, ANAND V, et al. On the existence and multiplicity of rotating detonations[J]. Proceedings of the Combustion Institute, 2017, 36(2): 2691-2698. |
83 | BYKOVSKII F A, VEDERNIKOV E F. Continuous detonation of a subsonic flow of a propellant[J]. Combustion, Explosion and Shock Waves, 2003, 39(3): 323-334. |
84 | ANAND V, GEORGE A ST, DRISCOLL R, et al. Characterization of instabilities in a rotating detonation combustor[J]. International Journal of Hydrogen Energy, 2015, 40(46): 16649-16659. |
85 | KINDRACKI J, KOBIERA A, WOLAŃSKI P, et al. Experimental and numerical study of the rotating detonation engine in hydrogen-air mixtures[C]∥ Progress in Propulsion Physics. Les Ulis: EDP Sciences, 2011. |
86 | ZHANG H L, LIU W D, LIU S J. Effects of inner cylinder length on H2/air rotating detonation[J]. International Journal of Hydrogen Energy, 2016, 41(30): 13281-13293. |
87 | LIU Y S, WANG Y H, LI Y S, et al. Spectral analysis and self-adjusting mechanism for oscillation phenomenon in hydrogen-oxygen continuously rotating detonation engine[J]. Chinese Journal of Aeronautics, 2015, 28(3): 669-675. |
88 | ZHANG S, YAO S, LUAN M, et al. Effects of injection conditions on the stability of rotating detonation waves[J]. Shock Waves, 2018, 28(5): 1079-1087. |
89 | LUAN Z Y, HUANG Y, GAO S J, et al. Formation of multiple detonation waves in rotating detonation engines with inhomogeneous methane/oxygen mixtures under different equivalence ratios[J]. Combustion and Flame, 2022, 241: 112091. |
90 | ZHAO M J, ZHANG H W. Origin and chaotic propagation of multiple rotating detonation waves in hydrogen/air mixtures[J]. Fuel, 2020, 275: 117986. |
91 | XIE Q F, WANG B, WEN H C, et al. Thermoacoustic instabilities in an annular rotating detonation combustor under off-design condition[J]. Journal of Propulsion and Power, 2018, 35(1): 141-151. |
92 | DENG L, MA H, XU C, et al. The feasibility of mode control in rotating detonation engine[J]. Applied Thermal Engineering, 2018, 129: 1538-1550. |
93 | ZHU Y Y, WANG K, WANG Z C, et al. Study on the performance of a rotating detonation chamber with different aerospike nozzles[J]. Aerospace Science and Technology, 2020, 107: 106338. |
94 | HUANG Y, XIA H Q, CHEN X N, et al. Shock dynamics and expansion characteristics of an aerospike nozzle and its interaction with the rotating detonation combustor[J]. Aerospace Science and Technology, 2021, 117: 106969. |
95 | ZHDAN S A, BYKOVSKII F A, VEDERNIKOV E F. Mathematical modeling of a rotating detonation wave in a hydrogen-oxygen mixture[J]. Combustion, Explosion, and Shock Waves, 2007, 43(4): 449-459. |
96 | HISHIDA M, FUJIWARA T, WOLANSKI P. Fundamentals of rotating detonations[J]. Shock Waves, 2009, 19(1): 1-10. |
97 | ZHOU R, WANG J P. Numerical investigation of flow particle paths and thermodynamic performance of continuously rotating detonation engines[J]. Combustion and Flame, 2012, 159(12): 3632-3645. |
98 | EUDE Y, DAVIDENKO D, FALEMPIN F, et al. Use of the adaptive mesh refinement for 3D simulations of a CDWRE (continuous detonation wave rocket engine)[C]∥ Proceedings of the 17th AIAA International Space Planes and Hypersonic Systems and Technologies Conference. Reston: AIAA, 2011. |
99 | FROLOV S M, DUBROVSKII A V, IVANOV V S. Three-dimensional numerical simulation of the operation of a rotating-detonation chamber with separate supply of fuel and oxidizer[J]. Russian Journal of Physical Chemistry B, 2013, 7(1): 35-43. |
100 | COCKS P A, HOLLEY A T, GREENE C B, et al. Development of a high fidelity RDE simulation capability[C]∥ Proceedings of the 53rd AIAA Aerospace Sciences Meeting. Reston: AIAA, 2015. |
101 | MENG Q Y, ZHAO N B, ZHANG H W. On the distributions of fuel droplets and in situ vapor in rotating detonation combustion with prevaporized n-heptane sprays[J]. Physics of Fluids, 2021, 33(4): 043307. |
102 | JIN S, XU C, ZHENG H T, et al. Detailed chemistry modeling of rotating detonations with dilute n-heptane sprays and preheated air[J]. Proceedings of the Combustion Institute, 2023, 39(4): 4761-4769. |
103 | SATO T, RAMAN V. Detonation structure in ethylene/air-based non-premixed rotating detonation engine[J]. Journal of Propulsion and Power, 2020, 36(5): 752-762. |
104 | SATO T, CHACON F, WHITE L, et al. Mixing and detonation structure in a rotating detonation engine with an axial air inlet[J]. Proceedings of the Combustion Institute, 2021, 38(3): 3769-3776. |
105 | REN Z X, ZHENG L X. Numerical study on rotating detonation stability in two-phase kerosene-air mixture[J]. Combustion and Flame, 2021, 231: 111484. |
106 | YAMAGUCHI M, MATSUOKA K, KAWASAKI A, et al. Supersonic combustion induced by reflective shuttling shock wave in fan-shaped two-dimensional combustor[J]. Proceedings of the Combustion Institute, 2019, 37(3): 3741-3747. |
107 | KAWASAKI A, INAKAWA T, KASAHARA J, et al. Critical condition of inner cylinder radius for sustaining rotating detonation waves in rotating detonation engine thruster[J]. Proceedings of the Combustion Institute, 2019, 37(3): 3461-3469. |
108 | TOBIAS J, DEPPERSCHMIDT D, WELCH C, et al. OH* chemiluminescence imaging of the combustion products from a methane-fueled rotating detonation engine[J]. Journal of Engineering for Gas Turbines and Power, 2019, 141(2): 021021. |
109 | 彭皓阳. 碳氢燃料旋转爆震燃烧机理研究[D].长沙:国防科技大学, 2020. |
PENG H Y. Combustion mechanism investigation of hydrocarbon continuous rotating detonation[D]. Changsha: National University of Defense Technology, 2020 (in Chinese). | |
110 | RANKIN B A, RICHARDSON D R, CASWELL A W, et al. Chemiluminescence imaging of an optically accessible non-premixed rotating detonation engine[J]. Combustion and Flame, 2017, 176: 12-22. |
111 | RANKIN B A, CODONI J R, CHO K Y, et al. Investigation of the structure of detonation waves in a non-premixed hydrogen-air rotating detonation engine using mid-infrared imaging[J]. Proceedings of the Combustion Institute, 2019, 37(3): 3479-3486. |
112 | YOKOO R, GOTO K, KASAHARA J, et al. Experimental study of internal flow structures in cylindrical rotating detonation engines[J]. Proceedings of the Combustion Institute, 2021, 38(3): 3759-3768. |
113 | HSU P S, SLIPCHENKO M N, JIANG N B, et al. Megahertz-rate OH planar laser-induced fluorescence imaging in a rotating detonation combustor[J]. Optics Letters, 2020, 45(20): 5776-5779. |
114 | CHACON F, GAMBA M. OH PLIF visualization of an optically accessible rotating detonation combustor[C]∥ AIAA Propulsion and Energy 2019 Forum. Reston: AIAA, 2019. |
115 | PENG W Y, CASSADY S J, STRAND C L, et al. Single-ended mid-infrared laser-absorption sensor for time-resolved measurements of water concentration and temperature within the annulus of a rotating detonation engine[J]. Proceedings of the Combustion Institute, 2019, 37(2): 1435-1443. |
116 | REIN K D, ROY S, SANDERS S T, et al. Measurements of gas temperatures at 100 kHz within the annulus of a rotating detonation engine[J]. Applied Physics B, 2017, 123(3): 88. |
117 | DEPPERSCHMIDT D, TOBIAS J, MILLER R, et al. Time-resolved PIV diagnostics to measure flow field exiting methane-fueled rotating detonation combustor[C]∥ Proceedings of the AIAA Scitech 2019 Forum. Reston: AIAA, 2019. |
118 | DUNN I B, SOSA J, SALVADORI M, et al. Flowfield velocity measurements of a rotating detonation engine[C]∥ AIAA Scitech 2020 Forum. Reston: AIAA, 2020. |
119 | FIEVISOHN R T, YU K H. Steady-state analysis of rotating detonation engine flowfields with the method of characteristics[J]. Journal of Propulsion and Power, 2016, 33(1): 89-99. |
120 | 宫继双, 周林, 张义宁, 等. 基于特征线理论的旋转爆震流场结构特征研究[J]. 实验流体力学, 2019, 33(1): 89-96. |
GONG J S, ZHOU L, ZHANG Y N, et al. Investigation on flow field structure of rotating detonation using the method of characteristics[J]. Journal of Experiments in Fluid Mechanics, 2019, 33(1): 89-96 (in Chinese). | |
121 | LIU S J, LIU W D, LIN Z Y, et al. Experimental research on the propagation characteristics of continuous rotating detonation wave near the operating boundary[J]. Combustion Science and Technology, 2015, 187(11): 1790-1804. |
122 | LI B X, WU Y W, WENG C S, et al. Influence of equivalence ratio on the propagation characteristics of rotating detonation wave[J]. Experimental Thermal and Fluid Science, 2018, 93: 366-378. |
123 | PENG H Y, LIU W D, LIU S J, et al. Flowfield analysis and reconstruction of ethylene-air continuous rotating detonation wave[J]. AIAA Journal, 2020, 58(12): 5036-5045. |
124 | FOTIA M L, SCHAUER F, KAEMMING T, et al. Experimental study of the performance of a rotating detonation engine with nozzle[J]. Journal of Propulsion and Power, 2015, 32(3): 674-681. |
125 | SMITH R P, SPRENGER D F. Combustion instability in solid-propellant rockets[J]. Symposium (International) on Combustion, 1953, 4(1): 893-906. |
126 | VOITSEKHOVSKII B V, MITROFANOV V V, TOPCHIAN M E. Structure of detonation front in gases[J]. Izd sib branch acad sci USSR, 1966. |
127 | AR'KOV O F, VOITSEKHOVSKII B V, MITROFANOV V V, et al. On the spinning-detonation-like properties of high frequency tangential oscillations in combustion chambers of liquid fuel rocket engines[J]. Journal of Applied Mechanics and Technical Physics, 1970, 11(1): 159-161. |
128 | SHEN I W. Theoretical analysis of a rotating two phase detonation in a liquid propellant rocket motor[D]. Ann Arbor: University of Michigan, 1971. |
129 | ANAND V, GUTMARK E. Rotating detonation combustors and their similarities to rocket instabilities[J]. Progress in Energy and Combustion Science, 2019, 73: 182-234. |
130 | ANAND V, GUTMARK E. Rotating detonations and spinning detonations: similarities and differences[J]. AIAA Journal, 2018, 56(5): 1717-1722. |
131 | 张海龙. 液体火箭发动机切向不稳定燃烧的旋转爆震机理研究[D]. 长沙: 国防科技大学, 2017. |
ZHANG H L. The rotating detonation mechanism of tangential combustion instability in a liquid rocket engine[D]. Changsha: National University of Defense Technology, 2017 (in Chinese). | |
132 | FAN L Z, SHI Q A, LIN W, et al. Numerical simulation of similarities between rotating detonation and high-frequency combustion instability under two mixing schemes[J]. AIP Advances, 2022, 12(2): 025310. |
133 | PENG H Y, LIU S J, LIU W D, et al. The nature of sawtooth wave and its distinction from continuous rotating detonation wave[J]. Proceedings of the Combustion Institute, 2023, 39(3): 3083-3093. |
134 | KASTHURI P, PAWAR S A, GEJJI R, et al. Coupled interaction between acoustics and unsteady flame dynamics during the transition to thermoacoustic instability in a multi-element rocket combustor[J]. Combustion and Flame, 2022, 240: 112047. |
135 | CHU W, GUO K K, TONG Y H, et al. Numerical analysis of self-excited tangential combustion instability for an MMH/NTO rocket combustor[J]. Proceedings of the Combustion Institute, 2023, 39(4): 5053-5061. |
136 | FROLOV S M, AKSENOV V S, IVANOV V S. Experimental proof of Zel'dovich cycle efficiency gain over cycle with constant pressure combustion for hydrogen-oxygen fuel mixture[J]. International Journal of Hydrogen Energy, 2015, 40(21): 6970-6975. |
137 | FROLOV S M, AKSENOV V S, IVANOV V S, et al. Large-scale hydrogen-air continuous detonation combustor[J]. International Journal of Hydrogen Energy, 2015, 40(3):1616-1623. |
138 | The first successful test launch of a new generation of green propellant liquid fuel rocket engine in Russia[EB/OL]. (2016)[2023-04-02]. . |
139 | Never-ending detonations could blast hypersonic craft into space[EB/OL]. (2020)[2023-04-02]. . |
140 | NASA validates revolutionary propulsion design for deep space missions[EB/OL]. (2022)[2023-04-02]. . |
141 | KASAHARA J, KATO Y, ISHIHARA K, et al. Research and development of rotating detonation engine for upper-stage kick motor system[C∥ Proceedings of the International Workshop on Detonation for Propulsion. 2016. |
142 | GOTO K, MATSUOKA K, MATSUYAMA K, et al. Flight demonstration of detonation engine system using sounding rocket S-520-31: Performance of rotating detonation engine[C]∥ AIAA Scitech 2022 Forum. Reston: AIAA, 2022. |
143 | KAWALEC M, WOLAŃSKI P, PERKOWSKI W, et al. Development of a liquid-propellant rocket powered by a rotating detonation engine[J]. Journal of Propulsion and Power, 2023: 1-8. |
144 | FROLOV S M, ZVEGINTSEV V I, IVANOV V S, et al. Wind tunnel tests of a hydrogen-fueled detonation ramjet model at approach air stream Mach numbers from 4 to 8[J]. International Journal of Hydrogen Energy, 2017, 42(40): 25401-25413. |
145 | FROLOV S M, ZVEGINTSEV V I, IVANOV V S, et al. Hydrogen-fueled detonation ramjet model: wind tunnel tests at approach air stream Mach number 5.7 and stagnation temperature 1500 K[J]. International Journal of Hydrogen Energy, 2018, 43(15): 7515-7524. |
146 | IVANOV V S, FROLOV S M, ZANGIEV A E, et al. Hydrogen fueled detonation ramjet: conceptual design and test fires at Mach 1.5 and 2.0[J]. Aerospace Science and Technology, 2021, 109: 106459. |
147 | LE NAOUR B, FALEMPIN F H, COULON K. MBDA R&T effort regarding continuous detonation wave engine for propulsion-status in 2016[C]∥ Proceedings of the 21st AIAA International Space Planes and Hypersonics Technologies Conference. Reston: AIAA, 2017. |
148 | LIU S J, LIU W D, WANG Y, et al. Free jet test of continuous rotating detonation ramjet engine[C]∥ Proceedings of the 21st AIAA International Space Planes and Hypersonics Technologies Conference. Reston: AIAA, 2017. |
149 | 科技前沿.我国自主研发新型冲压发动机飞行试验成功[EB/OL]. (2023-01-24)[2023-04-02]. . |
The frontier of science and technology. Successful flight test of a new type of ramjet developed independently in China[EB/OL]. (2023-01-24)[2023-04-02]. (in Chinese). | |
150 | WOLAŃSKI P, KALINA P, BALICKI W, et al. Development of gasturbine with detonation chamber[M]∥ Detonation control for propulsion. Cham: Springer, 2018: 23-37. |
151 | HIGASHI J, NAKAGAMI S, MATSUOKA K, et al. Experimental study of the disk-shaped rotating detonation turbine engine[C]∥ Proceedings of the 55th AIAA Aerospace Sciences Meeting. Reston: AIAA, 2017. |
152 | TELLEFSEN J, KING P, SCHAUER F, et al. Analysis of an RDE with convergent nozzle in preparation for turbine integration[C]∥ 50th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. Reston: AIAA, 2012. |
153 | DEBARMORE N, KING P, SCHAUER F, et al. Nozzle guide vane integration into rotating detonation engine[C]∥ Proceedings of the 51st AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. Reston: AIAA, 2013. |
154 | NAPLES A, HOKE J, BATTELLE R T, et al. RDE implementation into an open-loop T63 gas turbine engine[C]∥ Proceedings of the 55th AIAA Aerospace Sciences Meeting. Reston: AIAA, 2017. |
155 | BACH E, PASCHEREIT C O, STATHOPOULOS P, et al. Rotating detonation wave direction and the influence of nozzle guide vane inclination[J]. AIAA Journal, 2021, 59(12): 5276-5287. |
156 | SHEN D W, CHENG M, WU K, et al. Effects of supersonic nozzle guide vanes on the performance and flow structures of a rotating detonation combustor[J]. Acta Astronautica, 2022, 193: 90-99. |
157 | WU Y W, WENG C S, ZHENG Q, et al. Experimental research on the performance of a rotating detonation combustor with a turbine guide vane[J]. Energy, 2021, 218: 119580. |
158 | 周胜兵. 旋转爆震燃烧室及其与涡轮组合工作特性实验研究[D]. 南京: 南京理工大学, 2020. |
ZHOU S B. Experimental investigation on working characteristics of rotating detonation combustor and its combination with turbine[D]. Nanjing: Nanjing University of Science and Technology, 2020 (in Chinese). | |
159 | FROLOV S M, IVANOV V S, SHAMSHIN I O, et al. A detonation afterburner[J]. Doklady Physics, 2020, 65(1): 36-39. |
160 | 王超, 刘卫东, 刘世杰, 等. 吸气式连续旋转爆震与来流相互作用[J]. 航空学报, 2016, 37(5): 1411-1418. |
WANG C, LIU W D, LIU S J, et al. Interaction of air-breathing continuous rotating detonation with inflow[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(5): 1411-1418 (in Chinese). | |
161 | CAI J H, ZHOU J, LIU S J, et al. Effects of dynamic backpressure on shock train motions in straight isolator[J]. Acta Astronautica, 2017, 141: 237-247. |
162 | SUN J, ZHOU J, LIU S J, et al. Interaction between rotating detonation wave propagation and reactant mixing[J]. Acta Astronautica, 2019, 164: 197-203. |
163 | ZHANG H L, LIU W D, LIU S J. Experimental investigations on H2/air rotating detonation wave in the hollow chamber with Laval nozzle[J]. International Journal of Hydrogen Energy, 2017, 42(5): 3363-3370. |
164 | PENG H Y, LIU W D, LIU S J, et al. Hydrogen-air, ethylene-air, and methane-air continuous rotating detonation in the hollow chamber[J]. Energy, 2020, 211: 118598. |
165 | WANG C, LIU W D, LIU S J, et al. Experimental verification of air-breathing continuous rotating detonation fueled by hydrogen[J]. International Journal of Hydrogen Energy, 2015, 40(30): 9530-9538. |
166 | WANG C, LIU W D, LIU S J, et al. Experimental investigation on detonation combustion patterns of hydrogen/vitiated air within annular combustor[J]. Experimental Thermal and Fluid Science, 2015, 66: 269-278. |
167 | WANG G Y, LIU W D, LIU S J, et al. Experimental verification of cylindrical air-breathing continuous rotating detonation engine fueled by non-premixed ethylene[J]. Acta Astronautica, 2021, 189: 722-732. |
168 | 王光宇. 超声速来流圆柱形燃烧室旋转爆震机理研究[D].长沙: 国防科技大学, 2022. |
WANG G Y. Mechanism of continuous rotating detonation within cylindrical combustor under supersonic inflow[D]. Changsha: National University of Defense Technology, 2020 (in Chinese). | |
169 | China takes wraps off national hypersonic plan[EB/OL]. (2017) [2023-04-02]. . |
[1] | 田佳, 张靖周, 谭晓茗, 王元帅. 旋转爆震燃烧室梯度复合热防护结构热分析模型及验证[J]. 航空学报, 2022, 43(3): 125271-125271. |
[2] | 王超, 刘卫东, 刘世杰, 蒋露欣, 苏义. 吸气式连续旋转爆震与来流相互作用[J]. 航空学报, 2016, 37(5): 1411-1418. |
[3] | 邱华, 王玮, 范玮, 熊姹. U型方管中爆燃向爆震转变特性实验研究[J]. 航空学报, 2015, 36(6): 1788-1794. |
[4] | 左斌;胡云安;李静. 一种新的极值搜索算法及其在航空发动机燃烧主动控制中的应用[J]. 航空学报, 2009, 30(7): 1187-1196. |
[5] | 李建中;王家骅;唐豪;袁丽. 煤油/空气三管气动阀式脉冲爆震发动机[J]. 航空学报, 2009, 30(11): 2052-2058. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
版权所有 © 航空学报编辑部
版权所有 © 2011航空学报杂志社
主管单位:中国科学技术协会 主办单位:中国航空学会 北京航空航天大学