1 |
URZAY J. Supersonic combustion in air-breathing propulsion systems for hypersonic flight[J]. Annual Review of Fluid Mechanics, 2018, 50: 593-627.
|
2 |
岳连捷, 张旭, 张启帆, 等. 高马赫数超燃冲压发动机技术研究进展[J]. 力学学报, 2022, 54(2): 263-288.
|
|
YUE L J, ZHANG X, ZHANG Q F, et al. Research progress on high-Mach-number scramjet engine technologies[J]. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(2): 263-288 (in Chinese).
|
3 |
GIORDANO D. Impact of the Born-Oppenheimer approximation on aerothermodynamics[J]. Journal of Thermophysics and Heat Transfer, 2007, 21(3): 647-657.
|
4 |
李海燕. 高超声速高温气体流场的数值模拟[D]. 绵阳: 中国空气动力研究与发展中心, 2007: 20-22.
|
|
LI H Y. Numerical simulation of hypersonic and high temperature gas flowfields[D].Mianyang: China Aerodynamics Research and Development Center, 2007: 20-22 (in Chinese).
|
5 |
NAGNIBEDA E, KUSTOVA E. Non-equilibrium reacting gas flows: Kinetic theory of transport and relaxation processes[M]. Berlin, Heidelberg: Springer, 2009.
|
6 |
SCHMISSEUR J D. Hypersonics into the 21st century: A perspective on AFOSR-sponsored research in aerothermodynamics[J]. Progress in Aerospace Sciences, 2015, 72: 3-16.
|
7 |
FIÉVET R, RAMAN V. Effect of vibrational nonequilibrium on isolator shock structure[J]. Journal of Propulsion and Power, 2018, 34(5): 1334-1344.
|
8 |
DAI C L, SUN B, ZHOU C S, et al. Numerical investigation of real-gas effect of inward-turning inlet at Mach 12[J]. Aerospace Science and Technology, 2021, 115: 106786.
|
9 |
韩亦宇, 张若凌, 邢建文, 等. 热力学非平衡对超燃冲压发动机冷态流动影响研究[J]. 推进技术, 2022, 43(7): 210262.
|
|
HAN Y Y, ZHANG R L, XING J W, et al. Effects of thermal nonequilibrium on cold flow in scramjets[J]. Journal of Propulsion Technology, 2022, 43(7): 210262 (in Chinese).
|
10 |
KOO H, RAMAN V, VARGHESE P L. Direct numerical simulation of supersonic combustion with thermal nonequilibrium[J]. Proceedings of the Combustion Institute, 2015, 35(2): 2145-2153.
|
11 |
FIÉVET R, VOELKEL S, KOO H, et al. Effect of thermal nonequilibrium on ignition in scramjet combustors[J]. Proceedings of the Combustion Institute, 2017, 36(2): 2901-2910.
|
12 |
AO Y, WU K, LU H B, et al. Combustion dynamics of high Mach number scramjet under different inflow thermal nonequilibrium conditions[J]. Acta Astronautica, 2023, 208: 281-295.
|
13 |
YAO W. Nonequilibrium effects in hypersonic combustion modeling[J]. Journal of Propulsion and Power, 2022, 38(4): 523-540.
|
14 |
YAO W, LIU H, ZHANG Z, et al. Effects of thermal/chemical nonequilibrium on a high-Mach ethylene-fueled scramjet[J]. Journal of Propulsion and Power, 2023, 39(4): 562-579.
|
15 |
ZIDANE A, HAOUI R, SELLAM M, et al. Numerical study of a nonequilibrium H2—O2 rocket nozzle flow[J]. International Journal of Hydrogen Energy, 2019, 44(8): 4361-4373.
|
16 |
LEE J H. Basic governing equations for the flight regimes of aeroassisted orbital transfer vehicles[C]∥ 19th Thermophysics Conference. Reston: AIAA, 1984: 1729.
|
17 |
SKREBKOV O V. Vibrational non-equilibrium in the hydrogen-oxygen reaction. Comparison with experiment[J]. Combustion Theory and Modelling, 2015, 19(2): 131-158.
|
18 |
MILLIKAN R C, WHITE D R. Systematics of vibrational relaxation[J]. The Journal of Chemical Physics, 1963, 39(12): 3209-3213.
|
19 |
HALL J G. Fundamental phenomena in hypersonic flow[M]. Ithaca: Cornell University Press, 1966.
|
20 |
CANDLER G. Computation of thermo-chemical nonequilibrium Martian atmospheric entry flows[C]∥ 5th Joint Thermophysics and Heat Transfer Conference. Reston: AIAA, 1990: 1695.
|
21 |
MENTER F R. Two-equation eddy-viscosity turbulence models for engineering applications[J]. AIAA Journal, 1994, 32(8): 1598-1605.
|
22 |
WESTBROOK C K, DRYER F L. Simplified reaction mechanisms for the oxidation of hydrocarbon fuels in flames[J]. Combustion Science and Technology, 1981, 27(1-2): 31-43.
|
23 |
KNAB O, FRUEHAUF H H, MESSERSCHMID E W. Theory and validation of the physically consistent coupled vibration-chemistry-vibration model[J]. Journal of Thermophysics and Heat Transfer, 1995, 9(2): 219-226.
|
24 |
VOELKEL S, RAMAN V, VARGHESE P L. Effect of thermal nonequilibrium on reactions in hydrogen combustion[J]. Shock Waves, 2016, 26(5): 539-549.
|
25 |
WU Y, XU X, CHEN B, et al. Theoretical and numerical study of the binary scaling law for electron distribution in thermochemical non-equilibrium flows under extremely high Mach number[J]. Journal of Fluid Mechanics, 2022, 940: A3.
|
26 |
吴忧, 徐旭, 陈兵, 等. 高马赫数下横/逆向喷流干扰流场数值研究[J]. 航空学报, 2021, 42(S1): 726359.
|
|
WU Y, XU X, CHEN B, et al. Numerical study on transverse/opposing jet interaction flowfield under high Mach number[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(S1): 726359 (in Chinese).
|
27 |
KIM S D, LEE B J, LEE H J, et al. Robust HLLC riemann solver with weighted average flux scheme for strong shock[J]. Journal of Computational Physics, 2009, 228(20): 7634-7642.
|
28 |
PARK J S, YOON S H, KIM C. Multi-dimensional limiting process for hyperbolic conservation laws on unstructured grids[J]. Journal of Computational Physics, 2010, 229(3): 788-812.
|
29 |
VENKATAKRISHNAN V. On the accuracy of limiters and convergence to steady state solutions[C]∥31st Aerospace Sciences Meeting. Reston: AIAA, 1993: 880.
|
30 |
BLAZEK J. Computational fluid dynamics: Principles and applications[M]. 3rd ed. Oxford: Butterworth Heinemann, 2015.
|
31 |
LEHR H F.Experiments on shock-induced combustion[J].Astronautica Acta, 1972, 17(4):589-597.
|
32 |
DU P, XUE R, WU Y K, et al. Study on the flow field of a kerosene-fueled integrated inlet-combustor-nozzle oblique detonation engine[J]. Physics of Fluids, 2023, 35(6): 066127.
|
33 |
WANG Y Y, CHENG K L, TANG J F, et al. Analysis of the maximum flight Mach number of hydrocarbon-fueled scramjet engines under the flight cruising constraint and the combustor cooling requirement[J]. Aerospace Science and Technology, 2020, 98: 105594.
|
34 |
KUMARAN K, BEHERA P R, BABU V. Numerical investigation of the supersonic combustion of kerosene in a strut-based combustor[J]. Journal of Propulsion and Power, 2010, 26(5): 1084-1091.
|