收稿日期:
2023-03-14
修回日期:
2023-04-17
接受日期:
2023-05-05
出版日期:
2024-02-15
发布日期:
2023-05-17
通讯作者:
蔡尊
E-mail:caizun1666@163.com
基金资助:
Jianheng JI, Zun CAI(), Taiyu WANG, Mingbo SUN, Zhenguo WANG
Received:
2023-03-14
Revised:
2023-04-17
Accepted:
2023-05-05
Online:
2024-02-15
Published:
2023-05-17
Contact:
Zun CAI
E-mail:caizun1666@163.com
Supported by:
摘要:
随着对未来高超声速飞行器机动飞行需求的不断提升,发展宽速域超燃冲压发动机技术显得尤为重要,而宽范围来流条件将使得燃烧室内的流动、混合及燃烧等过程产生显著变化。尤其是超声速燃烧主要由混合过程所主导,呈现为典型的扩散火焰,来流条件的变化对燃料输运及混合过程影响极大,混合状态的改变进而会引起燃烧不稳定等一系列非稳态燃烧现象。本文对宽速域超燃冲压发动机流动燃烧过程进行了综述分析。首先,对超燃冲压发动机基本工作过程及应用进行了简要介绍;然后,分别论述了国内外关于低马赫数来流、高马赫数来流以及宽速域来流典型条件下超声速流动燃烧过程中亟待解决的关键问题和研究进展;最后,进行了总结并对后续研究提出了建议。
中图分类号:
纪鉴恒, 蔡尊, 王泰宇, 孙明波, 王振国. 宽速域超燃冲压发动机流动燃烧过程研究进展[J]. 航空学报, 2024, 45(3): 28696-028696.
Jianheng JI, Zun CAI, Taiyu WANG, Mingbo SUN, Zhenguo WANG. Flow and combustion process for wide speed range scramjet: Review[J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(3): 28696-028696.
表 1
低马赫数超燃冲压发动机流动燃烧特性代表性研究
文献 | 研究方法 | 马赫数 | 总压/MPa | 总温/K |
---|---|---|---|---|
蔡尊等[ | 试验研究, 数值仿真 | 2.92 | 2.6 | 1 530 |
冯戎等[ | 试验研究 | 2.92 | 2.6 | 1 650 |
张军龙等[ | 试验研究 | 2.0 | 1 165 | |
汪洪波等[ | 试验研究, 数值仿真 | 2.52 | 1.6 | 1 486 |
李建平等[ | 试验研究, 数值仿真 | 2.0 | 0.52 | 700 |
田野等[ | 试验研究, 数值仿真 | 2.0 | 1.0 | 1 100 |
罗飞腾等[ | 数值仿真 | 2.0 | 0.815 | 820 |
石磊等[ | 数值仿真 | 1.8 | ||
杨庆春等[ | 试验研究, 数值仿真 | 2.0 | 1 270 | |
黄伟等[ | 数值仿真 | 2.05 | 2.9 | 1 900 |
尤厚丰等[ | 数值仿真 | 2.0 | 1.0 | 2 000 |
安彬等[ | 试验研究 | 2.92 | 2.6 | 1 650 |
邓维鑫[ | 试验研究, 数值仿真 | 2.0~3.0 | 0.8 | 937 |
熊鹏飞等[ | 试验研究 | 2.0 | 0.82 | 950 |
石海涛等[ | 数值仿真 | 1.6 | 0.241 | 295 |
Anvekar等[ | 数值仿真 | 1.5~5 | 1.18~1.85 |
表 2
高马赫数超燃冲压发动机流动燃烧特性代表性研究
文献 | 研究方法 | 马赫数 | 静压/kPa | 静温/K |
---|---|---|---|---|
Petty等[ | 数值仿真 | 5.7 | 6 | 1 000 |
Suraweera和Smart[ | 试验研究 | 7.6 | 3.3 | 371 |
Doherty等[ | 试验研究, 数值仿真 | 10.4 | 0.64 | 213 |
Landsberg等[ | 数值仿真 | 9.48 | 0.97 | 361 |
Bricalli等[ | 数值仿真 | 7~12 | 1~3 | 227 |
Moura等[ | 数值仿真 | 10.4 | 213 | |
Mathur等[ | 试验研究 | 3~4 | 80~250 | |
杨庆春等[ | 理论分析 | 4~6 | 223 | |
Liu等[ | 试验研究 | 4.5 | ||
Mecklem等[ | 数值仿真 | 4 | 20 | 770 |
Brieschenk等[ | 试验研究 | 0.72~0.96 | 325~820 | |
Capra等[ | 数值仿真 | 6.44 | 8.99 | 446 |
Koo等[ | 数值仿真 | 2.32 | 57.76 | |
Fiévet等[ | 数值仿真 | 8.0 | 1.2 | 300 |
Landsberg等[ | 数值仿真 | 9.18 | 1.2 | 387 |
表 3
宽速域来流超燃冲压发动机流动燃烧特性代表性研究
文献 | 研究方法 | 马赫数 | 总压/MPa | 总温/K |
---|---|---|---|---|
连欢等[ | 试验研究 | 5.0~6.0 | 1.47~ 1.89 | 1 249~ 1 648 |
Landsberg等[ | 数值仿真 | 2.6~5.3 | ||
Arakawa等[ | 试验研究 | 2.5 | 0.54 | 2 200 |
Rockwell等[ | 试验研究, 数值仿真 | 2.0 | 0.3 | 1 200 |
Barth等[ | 试验研究, 数值仿真 | 9.15 | 0.051 | |
张旭等[ | 试验研究 | 4.3 | 12 | 3 800 |
Rodriguez[ | 数值仿真 | 2.0 | 1 632 | |
浮强等[ | 试验研究 | 2.0 | 1.05 | 885~ 1 285 |
Curran等[ | 数值仿真 | 6.6 | 0.044 | |
孟宇等[ | 试验研究 | 2.4~2.9 | 1.47~ 1.98 | 1 228~ 1 686 |
张军龙等[ | 试验研究 | 1.2~2.8 | 550~ 1 680 | |
Qiu等[ | 数值仿真 | 2.0~6.0 | 0.734~ 1.64 | 550~ 1 680 |
Feng等[ | 数值仿真 | 3.0 | 1.68 | 1 505 |
王友银等[ | 数值仿真 | 4.0~7.0 | 1.68 | 1 505 |
1 | TSIEN H S. Similarity laws of hypersonic flows[J]. Journal of Mathematics and Physics, 1946, 25(1-4): 247-251. |
2 | GOYNE C, HALL C, O’BRIEN W, et al. The Hy-V scramjet flight experiment[C]∥ Proceedings of the 14th AIAA/AHI Space Planes and Hypersonic Systems and Technologies Conference. Reston: AIAA, 2006. |
3 | 王江峰, 王旭东, 李佳伟, 等. 高超声速巡航飞行器乘波布局气动设计综述[J]. 空气动力学学报, 2018, 36(5): 705-728. |
WANG J F, WANG X D, LI J W, et al. Overview on aerodynamic design of cruising waverider configuration for hypersonic vehicles[J]. Acta Aerodynamica Sinica, 2018, 36(5): 705-728 (in Chinese). | |
4 | 张灿, 王轶鹏, 叶蕾. 国外近十年高超声速飞行器技术发展综述[J]. 战术导弹技术, 2020(6): 81-86. |
ZHANG C, WANG Y P, YE L. Summary of the technological development of overseas hypersonics in the past ten years[J]. Tactical Missile Technology, 2020(6): 81-86 (in Chinese). | |
5 | 刘薇, 龚海华. 国外高超声速飞行器发展历程综述[J]. 飞航导弹, 2020(3): 20-27, 59. |
LIU W, GONG H H. Review on the development history of hypersonic vehicles abroad [J]. Aerodynamic Missile Journal, 2020(3): 20-27, 59 (in Chinese). | |
6 | 张灿, 叶蕾. 法国高超声速技术最新发展动向[J]. 飞航导弹, 2019(6): 25-26, 51. |
ZHANG C, YE L. The latest development trend of hypersonic technology in France[J]. Aerodynamic Missile Journal, 2019(6): 25-26, 51 (in Chinese). | |
7 | 余勇. 超燃冲压发动机燃烧室工作过程理论和试验研究[D]. 长沙: 国防科学技术大学, 2004. |
YU Y. Thereorical analysis, experimental study of scramjet combustor operation process[D]. Changsha: National University of Defense Technology, 2004 (in Chinese). | |
8 | ZHAO G Y, SUN M B, WU J S, et al. Investigation of flame flashback phenomenon in a supersonic crossflow with ethylene injection upstream of cavity flameholder[J]. Aerospace Science and Technology, 2019, 87: 190-206. |
9 | HAN S, LEE S, LEE B J. Numerical analysis of thermochemical nonequilibrium flows in a model scramjet engine[J]. Energies, 2020, 13(3): 606. |
10 | URZAY J. Supersonic combustion in air-breathing propulsion systems for hypersonic flight[J]. Annual Review of Fluid Mechanics, 2018, 50: 593-627. |
11 | 李宁, 李旭昌, 张涵, 等. 超声速燃烧火焰稳定技术及其发展综述[J]. 飞航导弹, 2014(5): 60-67. |
LI N, LI X C, ZHANG H, et al. Review on supersonic combustion flame stabilization technology and its development[J]. Aerodynamic Missile Journal, 2014(5): 60-67 (in Chinese). | |
12 | CASTROGIOVANNI A. The scramjet engine, processes and characteristics[J]. AIAA Journal, 2010, 48(9): 2173-2174. |
13 | LIU Q L, BACCARELLA D, LEE T H. Review of combustion stabilization for hypersonic airbreathing propulsion[J]. Progress in Aerospace Sciences, 2020, 119: 100636. |
14 | IM S K, DO H. Unstart phenomena induced by flow choking in scramjet inlet-isolators[J]. Progress in Aerospace Sciences, 2018, 97: 1-21. |
15 | 贺理浩, 张启帆, 岳连捷, 等. 高速进气道低马赫数不起动特性及马赫数影响规律[J]. 推进技术, 2021, 42(10): 2207-2217. |
HE L H, ZHANG Q F, YUE L J, et al. Unstart characteristics of high speed inlet at low Mach number and influence law of Mach number[J]. Journal of Propulsion Technology, 2021, 42(10): 2207-2217 (in Chinese). | |
16 | 田雅茹. 点火延迟对超燃燃烧室宽速域燃烧性能的影响机制研究[D]. 上海: 上海交通大学, 2019. |
TIAN Y R. Study on the mechanism of the effect of ignition delay on the combustion characteristics in wide speed range of scramjet[D]. Shanghai: Shanghai Jiao Tong University, 2019 (in Chinese). | |
17 | HUANG W, DU Z B, YAN L, et al. Flame propagation and stabilization in dual-mode scramjet combustors: A survey[J]. Progress in Aerospace Sciences, 2018, 101: 13-30. |
18 | BARNES F W, SEGAL C. Cavity-based flameholding for chemically-reacting supersonic flows[J]. Progress in Aerospace Sciences, 2015, 76: 24-41. |
19 | HANK J. Air force research laboratory hypersonic propulsion research programs[C]∥ Proceedings of the 43rd AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. Reston: AIAA, 2007. |
20 | HANK J, MURPHY J, MUTZMAN R. The X-51A scramjet engine flight demonstration program[C]∥ Proceedings of the 15th AIAA International Space Planes and Hypersonic Systems and Technologies Conference. Reston: AIAA, 2008. |
21 | JACKSON K R, GRUBER M R, BUCCELLATO S. Mach 6–8+ hydrocarbon-fueled scramjet flight experiment: The HIFiRE flight 2 project[J]. Journal of Propulsion and Power, 2015, 31(1): 36-53. |
22 | VERGINE F, GROUND C, MADDALENA L. Strut injectors for scramjets: Total pressure losses in two streamwise vortex interactions[J]. Journal of Propulsion and Power, 2017, 33(5): 1140-1150. |
23 | BEN-YAKAR A, MUNGAL M G, HANSON R K. Time evolution and mixing characteristics of hydrogen and ethylene transverse jets in supersonic crossflows[J]. Physics of Fluids, 2006, 18(2): 026101. |
24 | KARAGOZIAN A R. Transverse jets and their control[J]. Progress in Energy and Combustion Science, 2010, 36(5): 531-553. |
25 | FOSTER L, SAUNDERS J, SANDERS B, et al. Highlights from a Mach 4 experimental demonstration of inlet mode transition for turbine-based combined cycle hypersonic propulsion[C]∥ Proceedings of the 48th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. Reston: AIAA, 2012. |
26 | ROBERTS K, WILSON D. Analysis and design of a hypersonic scramjet engine with a transition Mach number of 4.00[C]∥ Proceedings of the 47th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. Reston: AIAA, 2009. |
27 | HUANG W, YAN L, TAN J G. Survey on the mode transition technique in combined cycle propulsion systems[J]. Aerospace Science and Technology, 2014, 39: 685-691. |
28 | SONG W Y, LI M, CAI Y H, et al. Experimental investigation of hydrocarbon-fuel ignition in scramjet combustor[J]. Chinese Journal of Aeronautics, 2004, 17(2): 65-71. |
29 | DAGAUT P, CATHONNET M. The ignition, oxidation, and combustion of kerosene: A review of experimental and kinetic modeling[J]. Progress in Energy and Combustion Science, 2006, 32(1): 48-92. |
30 | 李宁, 宋文艳, 罗飞腾, 等. 基于先锋氢点火和双凹腔火焰稳定的煤油超声速燃烧特性[J]. 推进技术, 2012, 33(2): 205-210. |
LI N, SONG W Y, LUO F T, et al. Supersonic combustion characteristics of liquid kerosene under pilot hydrogen ignition and dual-cavity flameholding condition[J]. Journal of Propulsion Technology, 2012, 33(2): 205-210 (in Chinese). | |
31 | TRET’YAKOV P K, BRUNO C. Combustion of kerosene in a supersonic stream[J]. Combustion, Explosion and Shock Waves, 1999, 35(3): 245-251. |
32 | BUZUKOV A A. Promoting influence of alkylnitrates on kerosene—Air mixture self-ignition[J]. Combustion, Explosion and Shock Waves, 1994, 30(3): 269-275. |
33 | CAI Z, ZHU J J, SUN M B, et al. Laser-induced plasma ignition in a cavity-based scramjet combustor[J]. AIAA Journal, 2018, 56(12): 4884-4892. |
34 | FENG R, ZHU J J, WANG Z G, et al. Ignition modes of a cavity-based scramjet combustor by a gliding arc plasma[J]. Energy, 2021, 214: 118875. |
35 | ZHANG J L, CHANG J T, TIAN H M, et al. Flame interaction characteristics in scramjet combustor equipped with strut/wall combined fuel injectors[J]. Combustion Science and Technology, 2020, 192(10): 1863-1886. |
36 | WANG H B, WANG Z G, SUN M B, et al. Combustion modes of hydrogen jet combustion in a cavity-based supersonic combustor[J]. International Journal of Hydrogen Energy, 2013, 38(27): 12078-12089. |
37 | WANG H B, WANG Z G, SUN M B, et al. Large eddy simulation of a hydrogen-fueled scramjet combustor with dual cavity[J]. Acta Astronautica, 2015, 108: 119-128. |
38 | LI J P, WANG K, JIAO G Q, et al. Ignition and combustion characteristics of supersonic combustor under flight Mach number 2.6-3.8[J]. Fuel, 2021, 283: 118960. |
39 | LI J P, LI J D, WANG K, et al. Study of low-temperature ignition characteristics in a supersonic combustor[J]. Energy, 2020, 195: 117060. |
40 | TIAN Y, YANG S H, LE J L, et al. Investigation of combustion process of a kerosene fueled combustor with air throttling[J]. Combustion and Flame, 2017, 179: 74-85. |
41 | TIAN Y, YANG S H, LE J L, et al. Investigation of the effects of fuel injector locations on ignition and flame stabilization in a kerosene fueled scramjet combustor[J]. Aerospace Science and Technology, 2017, 70: 310-316. |
42 | LUO F T, SONG W Y, CHEN W J, et al. Investigation of kerosene supersonic combustion performance with hydrogen addition and fuel additive at low Mach inflow conditions[J]. Fuel, 2021, 285: 119139. |
43 | SHI L, GAO D, XING L L, et al. Numerical study on thermal choke behaviors driven by various rocket operations in an RBCC engine in ramjet mode[J]. International Journal of Turbo & Jet-Engines, 2020, 37(3): 305-317. |
44 | YANG Q C, BAO W, CHETEHOUNA K, et al. Thermal behavior of an isolator with mode transition inducing back-pressure of a dual-mode scramjet[J]. Chinese Journal of Aeronautics, 2017, 30(2): 595-601. |
45 | HUANG W, LI L Q, YAN L, et al. Numerical exploration of mixing and combustion in a dual-mode combustor with backward-facing steps[J]. Acta Astronautica, 2016, 127: 572-578. |
46 | 尤厚丰, 张兵, 李德宝. 超燃冲压发动机燃烧室的准一维计算与分析[J]. 推进技术, 2020, 41(3): 623-631. |
YOU H F, ZHANG B, LI D B. Quasi-one-dimensional prediction and analysis of scramjet combustor[J]. Journal of Propulsion Technology, 2020, 41(3): 623-631 (in Chinese). | |
47 | AN B, WANG Z G, SUN M B. Ignition dynamics and combustion mode transitions in a rocket-based combined cycle combustor operating in the ramjet/scramjet mode[J]. Aerospace Science and Technology, 2021, 118: 106951. |
48 | 邓维鑫. 宽范围马赫数超燃冲压发动机燃烧组织技术研究[D]. 成都: 西南交通大学, 2013. |
DENG W X. Research on combustion organizing technology of scramjet in wide range Mach number[D]. Chengdu: Southwest Jiaotong University, 2013 (in Chinese). | |
49 | XIONG P F, ZHENG D, TAN Y, et al. Experimental study of ignition and combustion characteristics of ethylene in cavity-based supersonic combustor at low stagnation temperature and pressure[J]. Aerospace Science and Technology, 2021, 109: 106414. |
50 | SHI H T, WANG G L, LUO X S, et al. Large-eddy simulation of a pulsed jet into a supersonic crossflow[J]. Computers & Fluids, 2016, 140: 320-333. |
51 | ANVEKAR M, KUSNUR V R, KULKARNI H B. A numerical study on the effect of strut on scramjet combustion intensity at various Mach numbers[J]. Journal of Aeronautics & Aerospace Engineering, 2020, 9(4): 1-7. |
52 | CAI Z, ZHU J J, SUN M B, et al. Ignition processes and modes excited by laser-induced plasma in a cavity-based supersonic combustor[J]. Applied Energy, 2018, 228: 1777-1782. |
53 | MIAO J J, FAN Y X, WU W Q, et al. Effect of air-assistant on ignition and flame-holding characteristics in a cavity-strut based combustor[J]. Applied Energy, 2021, 283: 116307. |
54 | IMRAN S, KORAKIANITIS T, SHAUKAT R, et al. Experimentally tested performance and emissions advantages of using natural-gas and hydrogen fuel mixture with diesel and rapeseed methyl ester as pilot fuels[J]. Applied Energy, 2018, 229: 1260-1268. |
55 | LI X J, HUANG X B, LIU H, et al. Fuel reactivity controlled self-starting and propulsion performance of a scramjet: A model investigation[J]. Energy, 2020, 195: 116920. |
56 | TIAN Y, ZENG X J, YANG S H, et al. Study on the effects of thermal throat on flame stabilization in a kerosene fueled supersonic combustor[J]. Energy Conversion and Management, 2018, 166: 98-105. |
57 | LI X J, HUANG X B, LIU H. A composite-fuel additive design method for n-decane low-temperature ignition enhancement[J]. Combustion and Flame, 2018, 188: 262-272. |
58 | PASTOR J V, GARCÍA-OLIVER J M, GARCÍA A, et al. Effect of laser induced plasma ignition timing and location on Diesel spray combustion[J]. Energy Conversion and Management, 2017, 133: 41-55. |
59 | O’BRIANT S A, GUPTA S B, VASU S S. Review: Laser ignition for aerospace propulsion[J]. Propulsion and Power Research, 2016, 5(1): 1-21. |
60 | WANG Z G, SUN M B, WANG H B, et al. Mixing-related low frequency oscillation of combustion in an ethylene-fueled supersonic combustor[J]. Proceedings of the Combustion Institute, 2015, 35(2): 2137-2144. |
61 | MA S G, ZHONG F Q, ZHANG X Y. Numerical study on supersonic combustion of hydrogen and its mixture with Ethylene and methane with strut injection[J]. International Journal of Hydrogen Energy, 2018, 43(15): 7591-7599. |
62 | ZHONG F Q, CHENG L W, GU H B, et al. Experimental study of flame characteristics of ethylene and its mixture with methane and hydrogen in supersonic combustor[J]. Aerospace Science and Technology, 2019, 86: 775-781. |
63 | HUANG Z W, ZHAO M J, ZHANG H W. Modelling n-heptane dilute spray flames in a model supersonic combustor fueled by hydrogen[J]. Fuel, 2020, 264: 116809. |
64 | CAI Z, WANG Z G, SUN M B, et al. Numerical investigation on ignition and flame propagation process of partially covered cavity in a supersonic flow[J]. Modern Physics Letters B, 2015, 29(23): 1550132. |
65 | KUMMITHA O R, PANDEY K M, PADIDAM A K R. Effect of a revolved wedge strut induced mixing enhancement for a hydrogen fueled scramjet combustor[J]. International Journal of Hydrogen Energy, 2021, 46(24): 13340-13352. |
66 | LI W Q, XUE Z R, KE H B, et al. Thermal analysis of a high-efficiency internally-cooled strut injector for scramjet engine[J]. International Journal of Thermal Sciences, 2021, 163: 106811. |
67 | CROCCO L. One-dimensional treatment of steady gas dynamics[M]∥ Fundamentals of Gas Dynamics. Princeton: Princeton University Press, 1958: 64-349. |
68 | MATSUO K, MIYAZATO Y, KIM H D. Shock train and pseudo-shock phenomena in internal gas flows[J]. Progress in Aerospace Sciences, 1999, 35(1): 33-100. |
69 | O’BYRNE S, DOOLAN M, OLSEN S R, et al. Analysis of transient thermal choking processes in a model scramjet engine[J]. Journal of Propulsion and Power, 2000, 16(5): 808-814. |
70 | RIGGINS D, TACKETT R, TAYLOR T, et al. Thermodynamic analysis of dual-mode scramjet engine operation and performance[C]∥ Proceedings of the 14th AIAA/AHI Space Planes and Hypersonic Systems and Technologies Conference. Reston: AIAA, 2006. |
71 | MCDANIEL K, EDWARDS J. Simulation of thermal choking in a model scramjet combustor[C]∥ Proceedings of the 30th Fluid Dynamics Conference. Reston: AIAA, 1999. |
72 | 路艳红, 凌文辉, 刘敬华, 等. 双模态超燃燃烧室计算[J]. 推进技术, 1999, 20(3): 56-60, 90. |
LU Y H, LING W H, LIU J H, et al. Computation of dual mode supersonic combustor[J]. Journal of Propulsion Technology, 1999, 20(3): 56-60, 90 (in Chinese). | |
73 | 聂粲, 汪洪波, 孙明波, 等. 矩形管道内激波串结构及其参数分布特性研究[C]∥第十一届全国流体力学学术会议, 2020. |
NIE C, WANG H B, SUN M B,et al. Study on the structure and parameter distribution of shock train in rectangular pipeline[C]∥The 11th National Conference on Fluid Mechanics, 2020 (in Chinese). | |
74 | DRISCOLL J F, RASMUSSEN C C. Correlation and analysis of blowout limits of flames in high-speed airflows[J]. Journal of Propulsion and Power, 2005, 21(6): 1035-1044. |
75 | FIRSOV A, SAVELKIN K V, YARANTSEV D A, et al. Plasma-enhanced mixing and flameholding in supersonic flow[J]. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2015, 373(2048): 20140337. |
76 | VINCENT-RANDONNIER A, LEONOV S B, PACKAN D. First experiments on plasma assisted supersonic combustion at LAERTE facility[C]∥ Proceedings of the 55th AIAA Aerospace Sciences Meeting. Reston: AIAA, 2017. |
77 | MARBLE F, HENDRICKES G, ZUKOSKI E. Progress toward shock enhancement of supersonic combustion processes[C]∥ Proceedings of the 23rd Joint Propulsion Conference. Reston: AIAA, 1987. |
78 | SEINER J, DASH S, KENZAKOWSKI D. Historical survey on enhanced mixing in scramjet engines[C]∥ Proceedings of the 9th International Space Planes and Hypersonic Systems and Technologies Conference. Reston: AIAA, 1999. |
79 | HOUPT A, LEONOV S, OMBRELLO T, et al. Flow control in supersonic-cavity-based airflow by quasi-direct-current electric discharge[J]. AIAA Journal, 2019, 57(7): 2881-2891. |
80 | LEONOV S B, ELLIOTT S, CARTER C, et al. Modes of plasma-stabilized combustion in cavity-based M=2 configuration[J]. Experimental Thermal and Fluid Science, 2021, 124: 110355. |
81 | EKLUND D R, STOUFFER S D, NORTHAM G B. Study of a supersonic combustor employing swept ramp fuel injectors[J]. Journal of Propulsion and Power, 1997, 13(6): 697-704. |
82 | GÉNIN F, MENON S. Simulation of turbulent mixing behind a strut injector in supersonic flow[J]. AIAA Journal, 2010, 48(3): 526-539. |
83 | HARTFIELD R J Jr, HOLLO S D, MCDANIEL J C. Experimental investigation of a supersonic swept ramp injector using laser-induced iodine fluorescence[J]. Journal of Propulsion and Power, 1994, 10(1): 129-135. |
84 | CHOUBEY G, GAUD P, MAHMOOD FATAH A, et al. Numerical investigation on geometric sensitivity and flame stabilisation mechanism in H2 fueled two-strut based scramjet combustor[J]. Fuel, 2022, 312: 122847. |
85 | BILLIG F S. Research on supersonic combustion[J]. Journal of Propulsion and Power, 1993, 9(4): 499-514. |
86 | 岳连捷, 张旭, 张启帆, 等. 高马赫数超燃冲压发动机技术研究进展[J]. 力学学报, 2022, 54(2): 263-288. |
YUE L J, ZHANG X, ZHANG Q F, et al. Research progress on high-mach-number scramjet engine technologies[J]. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(2): 263-288 (in Chinese). | |
87 | PETTY D J, WHEATLEY V, SMART M K, et al. Effects of oxygen enrichment on scramjet performance[J]. AIAA Journal, 2013, 51(1): 226-235. |
88 | SURAWEERA M V, SMART M K. Shock-tunnel experiments with a Mach 12 rectangular-to-elliptical shape-transition scramjet at offdesign conditions[J]. Journal of Propulsion and Power, 2009, 25(3): 555-564. |
89 | DOHERTY L J, SMART M K, MEE D J. Experimental testing of an airframe-integrated three-dimensional scramjet at Mach 10[J]. AIAA Journal, 2015, 53(11): 3196-3207. |
90 | LANDSBERG W O, WHEATLEY V, SMART M K, et al. Enhanced supersonic combustion targeting combustor length reduction in a Mach 12 scramjet[J]. AIAA Journal, 2018, 56(10): 3802-3807. |
91 | BRICALLI M G, BROWN L, BOYCE R R, et al. Scramjet performance with nonuniform flow and swept nozzles[J]. AIAA Journal, 2018, 56(10): 3988-4003. |
92 | MOURA A F, GIBBONS N, WHEATLEY V, et al. Effects of oxygen enrichment on supersonic combustion in a Mach 10 scramjet[J]. AIAA Journal, 2021, 59(11): 4556-4568. |
93 | MATHUR A, GOLDFELD M, MISHUNIN A, et al. Investigation of hydrocarbon fuels combustion in supersonic combustor[C]∥ Proceedings of the 40th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit. Reston: AIAA, 2004. |
94 | YANG Q C, CHANG J T, BAO W. Thermodynamic analysis on specific thrust of the hydrocarbon fueled scramjet[J]. Energy, 2014, 76: 552-558. |
95 | LIU Q L, BACCARELLA D, LANDSBERG W, et al. Cavity flameholding in an optical axisymmetric scramjet in Mach 4.5 flows[J]. Proceedings of the Combustion Institute, 2019, 37(3): 3733-3740. |
96 | MECKLEM S A, LANDSBERG W O, CURRAN D, et al. Combustion enhancement via tandem cavities within a Mach 8 scramjet combustor[J]. Aerospace Science and Technology, 2022, 124: 107551. |
97 | BRIESCHENK S, LORRAIN P, CAPRA B, et al. Chemiluminescence imaging in supersonic combustors operating in radical-farming mode[C]∥ Proceedings of the 18th AIAA/3AF International Space Planes and Hypersonic Systems and Technologies Conference. Reston: AIAA, 2012. |
98 | CAPRA B R, BOYCE R R, KUHN M, et al. Porous versus porthole fuel injection in a radical farming scramjet: numerical analysis[J]. Journal of Propulsion and Power, 2015, 31(3): 789-804. |
99 | KOO H, RAMAN V, VARGHESE P L. Direct numerical simulation of supersonic combustion with thermal nonequilibrium[J]. Proceedings of the Combustion Institute, 2015, 35(2): 2145-2153. |
100 | FIÉVET R, VOELKEL S, KOO H, et al. Effect of thermal nonequilibrium on ignition in scramjet combustors[J]. Proceedings of the Combustion Institute, 2017, 36(2): 2901-2910. |
101 | FIÉVET R, RAMAN V. Effect of vibrational nonequilibrium on isolator shock structure[J]. Journal of Propulsion and Power, 2018, 34(5): 1334-1344. |
102 | FIÉVET R. Impact of vibrational nonequilibrium on the simulation and modeling of dual-mode scramjets[D]. Ann Arbor: University of Michigan, 2018, 176-214. |
103 | LANDSBERG W O, WHEATLEY V, SMART M K, et al. Performance of high Mach number scramjets-Tunnel vs flight[J]. Acta Astronautica, 2018, 146: 103-110. |
104 | MCGILVRAY M, MORGAN R G. Effects of upstream injection on scramjet performance using an entropy-based method[J]. Journal of Propulsion and Power, 2009, 25(2): 295-302. |
105 | 黄志伟. 超声速来流下的动态燃烧机理研究[D]. 西安: 西北工业大学, 2018. |
HUANG Z W. Investigation on the mechanisms of combustion dynamics under supersonic inflow conditions[D]. Xi’an: Northwestern Polytechnical University, 2018 (in Chinese). | |
106 | ODAM J, PAULL A. Radical farming in scramjets[C]∥New Results in Numerical and Experimental Fluid Mechanics VI. Berlin, Heidelberg: Springer, 2007: 276-283. |
107 | BOYCE R R, MUDFORD N R, MCGUIRE J R. OH-PLIF visualisation of radical farming supersonic combustion flows[J]. Shock Waves, 2012, 22(1): 9-21. |
108 | SCOTT CARL D. Hypersonic and high temperature gas dynamics[J]. American Scientist, 1991, 79(2): 181. |
109 | TIAN Y, XIAO B G, ZHANG S P, et al. Experimental and computational study on combustion performance of a kerosene fueled dual-mode scramjet engine[J]. Aerospace Science and Technology, 2015, 46: 451-458. |
110 | BUILDER C. On the thermodynamic spectrum of airbreathing propulsion[C]∥ Proceedings of the 1st Annual Meeting. Reston: AIAA, 1964. |
111 | HEISER W H, PRATT D T. Hypersonic airbreathing propulsion[M]. Reston: AIAA, 1994: 241-248. |
112 | MERCIER R, RONALD T. Hypersonic technology (HyTech) program overview[C]∥ Proceedings of the 8th AIAA International Space Planes and Hypersonic Systems and Technologies Conference. Reston: AIAA, 1998. |
113 | SMITH C T, GOYNE C P. Application of stereoscopic particle image velocimetry to a dual-mode scramjet[J]. Journal of Propulsion and Power, 2011, 27(6): 1178-1185. |
114 | FÖRSTER F J, DRÖSKE N C, BÜHLER M N, et al. Analysis of flame characteristics in a scramjet combustor with staged fuel injection using common path focusing schlieren and flame visualization[J]. Combustion and Flame, 2016, 168: 204-215. |
115 | 连欢, 顾洪斌, 周芮旭, 等. 超燃冲压发动机模态转换及推力突变试验研究[J]. 试验流体力学, 2021, 35(1): 97-108. |
LIAN H, GU H B, ZHOU R X, et al. Investigation of mode transition and thrust performance in transient acceleration and deceleration experiments[J]. Journal of Experiments in Fluid Mechanics, 2021, 35(1): 97-108 (in Chinese). | |
116 | LANDSBERG W O, WHEATLEY V, VEERARAGA⁃ VAN A. Characteristics of cascaded fuel injectors within an accelerating scramjet combustor[J]. AIAA Journal, 2016, 54(12): 3692-3700. |
117 | ARAKAWA T, NOJIMA K, KOBAYASHI K, et al. Fuel/air mixing in reacting and non-reacting flows within a dual-mode combustor[J]. Transactions of the Japan Society for Aeronautical and Space Sciences, 2021, 64(2): 71-81. |
118 | ARAKAWA T, TOMIOKA S. Research on fuel mixing in a non-reacting situation simulating a dual-mode combustor[J]. Transactions of the Japan Society for Aeronautical and Space Sciences, Aerospace Technology Japan, 2019, 17(1): 82-89. |
119 | ROCKWELL R D, GOYNE C P, CHELLIAH H, et al. Development of a premixed combustion capability for dual-mode scramjet experiments[J]. Journal of Propulsion and Power, 2018, 34(2): 438-448. |
120 | BARTH J E, WISE D J, WHEATLEY V, et al. Tailored fuel injection for performance enhancement in a Mach 12 scramjet engine[J]. Journal of Propulsion and Power, 2019, 35(1): 72-86. |
121 | 张旭, 张启帆, 岳连捷, 等. 高马赫数燃烧强化的激波风洞试验研究[J]. 力学学报, 2022, 54(5): 1403-1413. |
ZHANG X, ZHANG Q F, YUE L J, et al. Shock-tunnel experimental study of combustion enhancement methods for a high-Mach-number scramjet[J]. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(5): 1403-1413 (in Chinese). | |
122 | RODRIGUEZ C G. Computational fluid dynamics analysis of the central institute of aviation motors/NASA scramjet[J]. Journal of Propulsion and Power, 2003, 19(4): 547-555. |
123 | 浮强, 宋文艳, 石德永, 等. 来流总温对双模态燃烧室模态转换边界的影响[J]. 航空动力学报, 2019, 34(5): 1119-1126. |
FU Q, SONG W Y, SHI D Y, et al. Effects of incoming flow total temperature on mode transition boundary in dual mode scramjet combustor[J]. Journal of Aerospace Power, 2019, 34(5): 1119-1126 (in Chinese). | |
124 | CURRAN D, WHEATLEY V, SMART M. Investigation of combustion mode control in a Mach 8 shape-transitioning scramjet[J]. AIAA Journal, 2019, 57(7): 2977-2988. |
125 | MENG Y, GU H B, ZHUANG J H, et al. Experimental study of mode transition characteristics of a cavity-based scramjet combustor during acceleration[J]. Aerospace Science and Technology, 2019, 93: 105316. |
126 | ZHANG J L, LIN L B, LUAN G W, et al. Experimental research on the stability margin of a variable geometry scramjet combustor in wide flight conditions[J]. Acta Astronautica, 2023, 202: 151-156. |
127 | QIU H C, ZHANG J L, FENG G J, et al. Numerical investigation on performance of axisymmetric variable geometry scramjet combustor equipped with strut flame holder[J]. Combustion Science and Technology, 2023, 195(5): 1059-1083. |
128 | FENG S, CHANG J T, ZHANG J L, et al. Numerical and experimental investigation of improving combustion performance of variable geometry dual-mode combustor[J]. Aerospace Science and Technology, 2017, 64: 213-222. |
129 | FENG S, CHANG J T, ZHANG Y S, et al. Numerical studies for performance improvement of a variable geometry dual mode combustor by optimizing deflection angle[J]. Aerospace Science and Technology, 2017, 68: 320-330. |
130 | WANG Y Y, SHI W, WANG X, et al. Aerodynamic performance enhancement of a variable-geometry dual-mode combustor designed by the method of characteristics[J]. Aerospace Science and Technology, 2021, 108: 106353. |
131 | ROGERS R. A study of the mixing of hydrogen injected normal to a supersonic airstream: NASA-TN-D-6114[R]. Washington, D.C.: NASA, 1971. |
132 | RIGGINS D, MCCLINTON C. A computational investigation of mixing and reacting flows in supersonic combustors[C]∥ Proceedings of the 30th Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 1992. |
133 | GUTMARK E J, SCHADOW K C, YU K H. Mixing enhancement in supersonic free shear flows[J]. Annual Review of Fluid Mechanics, 1995, 27: 375-417. |
134 | HIRANO K, MATSUO A, KOUCHI T, et al. New injector geometry for penetration enhancement of perpendicular jet into supersonic flow[C]∥ Proceedings of the 43rd AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. Reston: AIAA, 2007. |
135 | GRUBER M R, NEJAD A S, CHEN T H, et al. Mixing and penetration studies of sonic jets in a Mach 2 freestream[J]. Journal of Propulsion and Power, 1995, 11(2): 315-323. |
136 | DOHERTY L, SMART M, MEE D. Design of an airframe integrated 3D scramjet and experimental results at a Mach 10 flight condition[C]∥ Proceedings of the 18th AIAA/3AF International Space Planes and Hypersonic Systems and Technologies Conference. Reston: AIAA, 2012. |
137 | TURNER J C, SMART M K. Mode change characteristics of a three-dimensional scramjet at Mach 8[J]. Journal of Propulsion and Power, 2013, 29(4): 982-990. |
138 | AGUILERA C, YU K H. Scramjet to ramjet transition in a dual-mode combustor with fin-guided injection[J]. Proceedings of the Combustion Institute, 2017, 36(2): 2911-2918. |
139 | STEVA T B, GOYNE C P, ROCKWELL R D, et al. Comparison of a direct-connect and freejet dual-mode scramjet[J]. Journal of Propulsion and Power, 2015, 31(5): 1380-1392. |
140 | FALEMPIN F, SCHERRER D, LARUELLE G, et al. French Hypersonic Propulsion Program PREPHA-Results, lessons and perspectives[C]∥ Proceedings of the 8th AIAA International Space Planes and Hypersonic Systems and Technologies Conference. Reston: AIAA, 1998. |
141 | DESSORNES O, SCHERRER D. Tests of the JAPHAR dual mode ramjet engine[J]. Aerospace Science and Technology, 2005, 9(3): 211-221. |
142 | YANG H, MA J, MAN Y J, et al. Numerical simulation of variable-geometry inlet for TRRE combined cycle engine[C]∥ Proceedings of the 21st AIAA International Space Planes and Hypersonics Technologies Conference. Reston: AIAA, 2017. |
143 | BOUCHEZ M, FALEMPIN F, LEVINE V, et al. French-Russian partnership on hypersonic wide-range ramjets[J]. Journal of Propulsion and Power, 2001, 17(6): 1177-1183. |
144 | FALEMPIN F, SERRE L. French flight testing program LEA - status in 2011[C]∥ Proceedings of the 17th AIAA International Space Planes and Hypersonic Systems and Technologies Conference. Reston: AIAA, 2011. |
145 | STARKEY R. Off-design performance characterization of a variable geometry scramjet[C]∥ Proceedings of the 41st AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. Reston: AIAA, 2005. |
146 | ZHU X B, CAI Z, WU J J, et al. Convolutional neural network based combustion mode classification for condition monitoring in the supersonic combustor[J]. Acta Astronautica, 2019, 159: 349-357. |
147 | 叶舒然, 张珍, 王一伟, 等. 基于卷积神经网络的深度学习流场特征识别及应用进展[J]. 航空学报, 2021, 42(4): 524736. |
YE S R, ZHANG Z, WANG Y W, et al. Progress in deep convolutional neural network based flow field recognition and its applications[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(4): 524736 (in Chinese). | |
148 | ZHOU L, SONG Y T, JI W Q, et al. Machine learning for combustion[J]. Energy and AI, 2022, 7: 100128. |
149 | OGAWA H. Physical insight into fuel-air mixing for upstream-fuel-injected scramjets via multi-objective design optimization[J]. Journal of Propulsion and Power, 2015, 31(6): 1505-1523. |
150 | ZHU M J, ZHANG S, ZHENG Y. Conceptual design and optimization of scramjet engines using the exergy method[J]. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2018, 40(12): 553. |
[1] | 乔竑玮, 梁剑寒, 张林, 孙明波, 陈玉俏. 超声速燃烧中的概率密度函数方法研究进展[J]. 航空学报, 2024, 45(8): 28802-028802. |
[2] | 陈树生, 冯聪, 张兆康, 赵轲, 张新洋, 高正红. 基于全局/梯度优化方法的宽速域乘波-机翼布局气动设计[J]. 航空学报, 2024, 45(6): 629596-629596. |
[3] | 刘小勇, 王明福, 刘建文, 任鑫, 张轩. 超燃冲压发动机研究回顾与展望[J]. 航空学报, 2024, 45(5): 529878-529878. |
[4] | 马印锴, 李祝飞, 黄琪, 杨基明. 宽速域翼尖涡及其与斜激波相互作用[J]. 航空学报, 2023, 44(7): 38-50. |
[5] | 赵翔, 夏智勋, 方传波, 马立坤, 李潮隆, 段一凡. 固体火箭超燃冲压发动机理论性能分析[J]. 航空学报, 2023, 44(5): 126971-126971. |
[6] | 关清帝, 梁剑寒, 张林, 陈文武, 陈玉俏. 一般曲线坐标系下概率密度函数方法及其在超声速燃烧中的应用[J]. 航空学报, 2023, 44(4): 126677-126677. |
[7] | 陈树生, 张兆康, 李金平, 冯聪, 高正红. 一种宽速域乘波三角翼气动布局设计[J]. 航空学报, 2023, 44(23): 128441-128441. |
[8] | 孙士珺, 李晓龙, 刘艳明, 王建华, 王松涛. 宽速域来流对超声通流风扇叶型气动性能的影响[J]. 航空学报, 2023, 44(21): 528523-528523. |
[9] | 宋家辉, 许爱国, 苗龙, 廖煜淦, 梁福文, 田丰, 聂明卿, 王宁飞. 激波/平板层流边界层干扰熵增特性[J]. 航空学报, 2023, 44(21): 528520-528520. |
[10] | 夏智勋, 冯运超, 马立坤, 陈斌斌, 李潮隆, 杨鹏年, 刘延东, 屈影, 赵康淳, 赵李北, 任鹏浩. 固体火箭超燃冲压发动机燃烧技术研究进展[J]. 航空学报, 2023, 44(15): 528793-528793. |
[11] | 孙明波, 朱家健, 罗天罡, 李沁远, 田轶夫, 万明罡, 孙永超. 非稳态超声速燃烧电激励调控技术研究进展[J]. 航空学报, 2023, 44(15): 528787-528787. |
[12] | 李潮隆, 夏智勋, 马立坤, 赵翔, 罗振兵, 段一凡. 固体火箭超燃冲压发动机性能试验[J]. 航空学报, 2022, 43(12): 126075-126075. |
[13] | 王猛, 李玉军, 赵荣奂, 衷洪杰. 基于在线加热涂层的宽速域转捩探测技术[J]. 航空学报, 2022, 43(11): 526820-526820. |
[14] | 范月华, 段毅, 周乃桢, 杨攀. 高马赫数层流摩阻数值计算精度[J]. 航空学报, 2021, 42(9): 625737-625737. |
[15] | 陈以勒, 俞凯凯, 徐惊雷. 几何尺寸约束的超燃冲压发动机推力喷管设计[J]. 航空学报, 2021, 42(6): 124259-124259. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
版权所有 © 航空学报编辑部
版权所有 © 2011航空学报杂志社
主管单位:中国科学技术协会 主办单位:中国航空学会 北京航空航天大学