[1] MITCHELL C A, VOGEL B J. The canard rotor wing (CRW) aircraft-a new way to fly:AIAA-2003-2571[R]. Reston:AIAA, 2003.
[2] 邓阳平, 高正红, 詹浩. 鸭式旋翼/机翼飞机的技术发展及其关键技术[J]. 飞行力学, 2006, 24(3):1-4 DENG Y P, GAO Z H, ZHAN H. Development and key technologies of the CRW[J]. Flight Dynamics, 2006, 24(3):1-4(in Chinese).
[3] 孙威, 高正红, 黄江涛, 等. 旋转机翼悬停气动特性研究[J]. 空气动力学学报, 2015, 33(2):232-238. SUN W, GAO Z H, HUANG J T, et al. Aerodynamic characteristics of hovering rotor/wing[J]. Acta Aerodynamica Sinica, 2015, 33(2):232-238(in Chinese).
[4] SUN W, GAO Z H, DU Y M, et al. Mechanism of unconventional aerodynamic characteristics of an elliptic airfoil[J]. Chinese Journal of Aeronautics, 2015, 28(3):687-694.
[5] 邓阳平, 高正红, 詹浩. 鸭式旋翼/机翼飞机悬停及小速度前飞气动干扰实验研究[J]. 实验力学, 2009,24(6):563-567. DENG Y P, GAO Z H, ZHAN H. Experimental investigation on aerodynamic interactions of canard rotor/wing aircraft in hover and low speed forward flight[J]. Journal of Experimental Mechanics, 2009, 24(6):563-567(in Chinese).
[6] MCKENNA J T. One step beyond[J]. Rotor & Wing, 2007, 41(2):54-56.
[7] THOMPSON T L, SMITH R L, HELWANI M, et al. Wind tunnel test results for a Canard Rotor/Wing aircraft configuration[C]//57th Annual Forum of American Helicopter Society. Alexandria, VA:American Helicopter Society Inc., 2001, 57(2):1431-1443.
[8] 孙威, 高正红. 旋转机翼飞机旋翼/机身干扰流场数值计算分析[J]. 飞行力学, 2011, 29(6):4-8. SUN W, GAO Z H. Numerical computation and analysis on rotor/fuselage interactive flow field for rotor wing plane[J]. Flight Dynamics, 2011, 29(6):4-8(in Chinese).
[9] SAEID N R, GENESH R, THOMAS L T. Simulation of unsteady aerodynamics of the unmanned CRW dragonfly aircraft hovering near the ground[C]//The AHS International Specialists' Meeting on Unmanned Rotorcraft. Alexandria, VA:American Helicopter Society Inc., 2005:439-459.
[10] RAJAGOPALAN R G, FANUCCI J B. Finite difference model for vertical axis wind turbines[J]. Journal of Propulsion and Power,1985, 1(6):432-436.
[11] LI Y B, MA D L. Numerical simulation of rotor-aerodynamic surface interaction in hover using moving chimera grid[J]. Chinese Journal of Aeronautics, 2012, 25(3):342-348.
[12] YOON S, JAMESON A. Lower-upper symmetric-Gauss-seidel method for the Euler and Navier-Stokes equations[J]. AIAA Journal, 1988, 26(9):1025-1026.
[13] ROE P L. Approximate riemann solvers, parameter vectors, and difference schemes[J]. Journal of Computational Physics, 1997, 135(2):250-258.
[14] SPALART P R, ALLMARAS S R. A one equation turbulence model for aerodynamic flows:AIAA-1992-0439[R]. Reston:AIAA, 1992.
[15] WEISS J M, SMITH W A. Preconditioning applied to variable and constant density flow[J]. AIAA Journal, 1995, 33(11):2050-2057.
[16] MINECK R E, GORTTON S A. Steady and periodic pressure measurements on a generic helicopter fuselage model in the presence of a rotor:NASA/TM-2000-210286[R]. Washington D.C.:NASA, 2000.
[17] O'BRIEN D M, JR. Analysis of computational modeling techniques for complete rotorcraft configurations[D]. Atlanta:Georgia Institute of Technology, 2006:121-125.
[18] PARK Y M, NAM H J, KOWN O J. Simulation of unsteady rotor-fuselage interactions using unstructured adaptive meshes[C]//59th Annual Forum of the American Helicopter Society. Alexandria, VA:American Helicopter Society Inc., 2003:1-11.
[19] TADGHIGHI H. Simulation of rotor-body interactional aerodynamics:an unsteady rotor source distributed disk model[C]//57th Annual Forum of American Helicopter Society. Alexandria, VA:American Helicopter Society Inc., 2001.
[20] CHAFFIN M S, BERRY J D. Helicopter fuselage aerodynamics under a rotor by Navier-Stokes simulation[J]. Journal of American Helicopter Society, 1997, 42(3):235-242. |