赵鲲1, 梁俊彪1, Ivan BELYAEV2, Victor KOPIEV2, Gareth BENNETT3
收稿日期:
2022-01-26
修回日期:
2022-06-15
出版日期:
2022-08-15
发布日期:
2022-04-24
通讯作者:
赵鲲,E-mail:zhaokun@cardc.cn
E-mail:zhaokun@cardc.cn
基金资助:
ZHAO Kun1, LIANG Junbiao1, Ivan BELYAEV2, Victor KOPIEV2, Gareth BENNETT3
Received:
2022-01-26
Revised:
2022-06-15
Online:
2022-08-15
Published:
2022-04-24
Supported by:
摘要: 起落架是民用飞机起降阶段的主要噪声源之一,是气动噪声控制领域的一项重要难题。经过近半个世纪的研究,起落架噪声特性及控制技术发展方面已经取得了相当丰富的成果。首先,简单回顾了起落架噪声的研究历程,介绍了噪声产生机理;然后,概述了国内外利用风洞试验、飞行试验、数值计算等多种手段在民用飞机起落架气动噪声及控制技术研究领域所取得的成果和最新进展,内容涉及整流罩、小孔封堵、部件优化、空气幕等多种方法;最后,给出了国外研究带来的启示,剖析了当前存在的问题,并对未来发展作出了展望。
中图分类号:
赵鲲, 梁俊彪, Ivan BELYAEV, Victor KOPIEV, Gareth BENNETT. 民用飞机起落架噪声及其控制技术研究进展[J]. 航空学报, 2022, 43(8): 26996-026996.
ZHAO Kun, LIANG Junbiao, Ivan BELYAEV, Victor KOPIEV, Gareth BENNETT. Review of civil airplane landing gear noise study and its control approaches[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(8): 26996-026996.
[1] MORRELL S, TAYLOR R, LYLE D. A review of health effects of aircraft noise[J]. Australian and New Zealand Journal of Public Health, 1997, 21(2): 221-236. [2] FRANSSEN E A M, VAN WIECHEN C M A G, NAGELKERKE N J D, et al. Aircraft noise around a large international airport and its impact on general health and medication use[J]. Occupational and Environmental Medicine, 2004, 61(5): 405-413. [3] 中国民用航空局. 航空器型号和适航合格审定噪声规定(第二次修订版)[S]. 北京:中国民用航空局, 2018. Civil Aviation Administration of China. Aircraft type and airworthiness certification noise regulations (2nd revised edition)[S]. Beijing: Civil Aviation Administration of China, 2018(in Chinese). [4] 刘沛清, 邢宇, 李玲, 等. 现代大型飞机起落架气动噪声研究进展[J]. 空气动力学学报, 2017, 35(6): 751-759. LIU P Q, XING Y, LI L, et al. Progress in aeroacoustic investigation of modern large aircraft landing gear[J]. Acta Aerodynamica Sinica, 2017, 35(6): 751-759 (in Chinese). [5] LEYLEKIAN L, LEBRUN M, LEMPEREUR P. An overview of aircraft noise reduction technologies[J]. Journal of Aerospace Lab, 2014(7):1-15. [6] DOBRZYNSKI W. Almost 40 years of airframe noise research: What did we achieve?[J]. Journal of Aircraft, 2010, 47(2): 353-367. [7] ZHAO K, OKOLO P, NERI E, et al. Noise reduction technologies for aircraft landing gear—A bibliographic review[J]. Progress in Aerospace Sciences, 2020, 112: 100589. [8] YAMAMOTO K, HAYAMA K, KUMADA T, et al. A flight demonstration for airframe noise reduction technology[J]. CEAS Aeronautical Journal, 2019, 10(1): 77-92. [9] RAVETTA P A, WISDA D M, KHORRAMI M R, et al. Assessment of airframe noise reduction technologies based on EPNL from flight tests: AIAA-2019-2456[R]. Reston: AIAA, 2019. [10] KHORRAMI M R, LOCKARD D P, HUMPHREYS W M, et al. Flight-test evaluation of landing gear noise reduction technologies: AIAA-2019-2455[R]. Reston: AIAA, 2019. [11] MURAYAMA M, YAMAMOTO K, YOKOKAWA Y, et al. Noise reduction design for flap side-edges toward FQUROH flight demonstration: AIAA-2017-4031[R]. Reston: AIAA, 2017. [12] KHORRAMI M R, LOCKARD D P, HUMPHREYS W M, et al. Flight-test evaluation of airframe noise mitigation technologies: AIAA-2018-2972[R]. Reston: AIAA, 2018. [13] RAVETTA P, BURDISSO R, NG W, et al. Screening of potential noise control devices at Virginia tech for QTD II flight test: AIAA-2007-3455[R]. Reston: AIAA, 2007. [14] PIET J F, DAVY R, ELIAS G, et al. Flight test investigation of add-on treatments to reduce aircraft airframe noise: AIAA-2005-3007[R]. Reston: AIAA, 2005. [15] BLISS D, HAYDEN R E. Landing gear and cavity noise prediction: NASA CR-2714[R]. Washington, D.C.: NASA, 1976. [16] FINK M R. Noise component method for airframe noise[J]. Journal of Aircraft, 1979, 16(10): 659-665. [17] FINK M R. Airframe noise prediction method: FAA-RD-77-29[R]. Washington, D.C.: FAA, 1977. [18] SMITH M, CHOW L. Validation of a prediction model for aerodynamic noise from aircraft landing gears: AIAA-2002-2581[R]. Reston: AIAA, 2002. [19] GUO Y P, YAMAMOTO K J, STOKER R W. Component-based empirical model for high-lift system noise prediction[J]. Journal of Aircraft, 2003, 40(5): 914-922. [20] GUO Y P. A statistical model for landing gear noise prediction[J]. Journal of Sound and Vibration, 2005, 282(1-2): 61-87. [21] GUO Y P. A semi-empirical model for aircraft landing gear noise prediction: AIAA-2006-2627[R]. Reston: AIAA, 2006. [22] MERINO-MARTÍNEZ R, NERI E, SNELLEN M, et al. Multi-approach study of nose landing gear noise[J]. Journal of Aircraft, 2020, 57(3): 517-533. [23] 徐康乐, 陈迎春, 徐亮. 基于物理机制模型的民机机体噪声预测[J]. 气体物理, 2021, 6(3): 77-82. XU K L, CHEN Y C, XU L. Physical model-based airframe noise prediction for civil aircraft[J]. Physics of Gases, 2021, 6(3): 77-82 (in Chinese). [24] HELLER H H, DOBRZYNSKI W M. Sound radiation from aircraft wheel-well/landing-gear configurations[J]. Journal of Aircraft, 1977, 14(8): 768-774. [25] KIPERSZTOK O, SENGUPTA G. Flight test of the 747-JT9D for airframe noise[J]. Journal of Aircraft, 1982, 19(12): 1061-1069. [26] LAZOS B S. Mean flow features around the inline wheels of four-wheel landing gear[J]. AIAA Journal, 2002, 40(2): 193-198. [27] RINGSHIA A, RAVETTA P, NG W, et al. Aerodynamic measurements of the 777 main landing gear model: AIAA-2006-2625[R]. Reston: AIAA, 2006. [28] NEUHART D, KHORRAMI M, CHOUDHARI M. Aerodynamics of a Gulfstream G550 nose landing gear model: AIAA-2009-3152[R]. Reston: AIAA, 2009. [29] NING F L, HOU H J, ZHAI Q B, et al. Research on localization of aeroacoustic sources of landing gears[C]//2021 4th International Conference on Information Communication and Signal Processing (ICICSP). Piscataway: IEEE Press, 2021: 279-283. [30] RAVETTA P A, KHORRAMI M R, KONIG B, et al. Analysis of simulated and experimental noise sources of Boeing 777 main gear model via CLEAN in 3D: AIAA-2018-3470[R]. Reston: AIAA, 2018. [31] 宁方立, 刘勇. 飞机起落架的气动噪声源定位研究[J]. 噪声与振动控制, 2018, 38(S2): 615-618. NING F L, LIU Y. Study on localization of aeroacoustic sources of landing gears[J]. Noise and Vibration Control, 2018, 38(S2): 615-618 (in Chinese). [32] 宁方立, 张超, 潘峰, 等. 飞机起落架噪声源定位的压缩感知算法[J]. 航空学报, 2018, 39(5): 121810. NING F L, ZHANG C, PAN F, et al. Compressive sensing algorithm for sound source location of aircraft landing gear[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(5): 121810 (in Chinese). [33] HEDGES L, TRAVIN A, SPALART P. Detached-eddy simulations over a simplified landing gear[J]. Journal of Fluids Engineering, 2002, 124(2): 413-423. [34] LI F, KHORRAMI M, MALIK M. Unsteady simulations of a landing-gear flow field: AIAA-2002-2411[R]. Reston: AIAA, 2002. [35] IMAMURA T, HIRAI T, AMEMIYA K, et al. Aerodynamic and aeroacoustic simulations of a two-wheel landing gear[J]. Procedia Engineering, 2010, 6: 293-302. [36] SPALART P R, SHUR M L, STRELETS M K, et al. Initial noise predictions for rudimentary landing gear[J]. Journal of Sound and Vibration, 2011, 330(17): 4180-4195. [37] BRÈS G A, FREED D, WESSELS M, et al. Flow and noise predictions for the tandem cylinder aeroacoustic benchmark[J]. Physics of Fluids, 2012, 24(3): 036101. [38] LIU W, WOOK KIM J, ZHANG X, et al. Landing-gear noise prediction using high-order finite difference schemes[J]. Journal of Sound and Vibration, 2013, 332(14): 3517-3534. [39] XIAO Z X, LIU J, LUO K Y, et al. Investigation of flows around a rudimentary landing gear with advanced detached-eddy-simulation approaches[J]. AIAA Journal, 2013, 51(1): 107-125. [40] SPALART P R, WETZEL E A. Rudimentary landing gear results at the 2012 BANC-II airframe noise workshop[J]. International Journal of Aeroacoustics, 2015, 14(1-2): 193-216. [41] ALQASH S, DHOTE S, BEHDINAN K. Predicting far-field noise generated by a landing gear using multiple two-dimensional simulations[J]. Applied Sciences, 2019, 9(21): 4485. [42] GUO Z F, LIU P Q, ZHANG J, et al. Numerical simulation of aeroacoustic noise from landing gear and rectangular cavity[J]. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2020, 234(7): 1259-1271. [43] ELKOBY R, BRUSNIAK L, STOKER R, et al. Airframe noise test results from the QTD II flight test program: AIAA-2007-3457[R]. Reston: AIAA, 2007. [44] DOBRZYNSKI W, CHOW L, GUION P, et al. Research into landing gear airframe noise reduction: AIAA-2002-2409[R]. Reston: AIAA, 2002. [45] 乔渭阳, MICHEL U. 基于传声器阵列过顶测量结果的飞机起落架噪声研究[J]. 应用声学, 2001, 20(2): 1-6. QIAO W Y, MICHEL U. A study on landing gear noise based on the fly-over measurements with a planar microphone array[J]. Applied Acoustics, 2001, 20(2): 1-6 (in Chinese). [46] 龙双丽, 聂宏, 薛彩军, 等. 飞机起落架气动噪声特性仿真与试验[J]. 航空学报, 2012, 33(6): 1002-1013. LONG S L, NIE H, XUE C J, et al. Simulation and experiment on aeroacoustic noise characteristics of aircraft landing gear[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(6): 1002-1013 (in Chinese). [47] 龙双丽, 聂宏, 许远, 等. 摇臂式起落架结构件气动噪声试验研究[J]. 实验流体力学, 2012, 26(6): 24-29. LONG S L, NIE H, XU Y, et al. Experiment study on articulated landing gear structure noise[J]. Journal of Experiments in Fluid Mechanics, 2012, 26(6): 24-29 (in Chinese). [48] 邢宇, 刘沛清, 郭昊, 等. 简化起落架噪声相似准则及马赫数比例律[J]. 航空学报, 2017, 38(6): 120769. XING Y, LIU P Q, GUO H, et al. Similarity rule and Mach number scaling law for simplified landing gear noise[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(6): 120769 (in Chinese). [49] 徐康乐, 陈迎春, 江渊, 等. 基于相控麦克风阵列的民机主起落架气动噪声源识别技术研究[J]. 空气动力学学报, 2015, 33(4): 523-529. XU K L, CHEN Y C, JIANG Y, et al. Aerodynamic noise source detection for main landing gear based on phased microphone array technique[J]. Acta Aerodynamica Sinica, 2015, 33(4): 523-529 (in Chinese). [50] KOPIEV V, BELYAEV I, ZAYTSEV M, et al. Experimental study of truncated-cylinder struts for noise reduction of large-scale landing gears[J]. Journal of Sound and Vibration, 2021, 511: 116362. [51] 梁勇, 陈迎春, 赵鲲, 等. 低速开式空腔自激反馈流场结构与流致噪声的风洞试验研究[J]. 声学学报, 2020, 45(6): 859-868. LIANG Y, CHEN Y C, ZHAO K, et al. Wind tunnel experimental study of self oscillation feedback flow field structure and flow induced aeroacoustic for open cavity at low speed[J]. Acta Acustica, 2020, 45(6): 859-868 (in Chinese). [52] ZHAO K, ZHANG R, CAO Q, et al. Experimental investigation of the four-wheel landing gear noise in large-scale configurations[C]//49th International Congress and Exposition on Noise Control Engineering, 2020. [53] KOPIEV V, BELYAEV I, ZAYTSEV M, et al. Experimental study of wheel contribution to large-scale landing gear noise[C]//2020 International Conference on Dynamics and Vibroacoustics of Machines (DVM). Piscataway: IEEE Press, 2020: 1-6. [54] 梁勇, 陈迎春, 赵鲲, 等. 锯齿单元对起落架/舱体耦合噪声抑制试验[J]. 航空学报, 2019, 40(8): 122932. LIANG Y, CHEN Y C, ZHAO K, et al. Test on suppression of aircraft landing gear/bay coupling noise using sawtooth spoiler[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(8): 122932 (in Chinese). [55] HUANG L L, ZHAO K, LIANG J B, et al. A numerical study of the wind speed effect on the flow and acoustic characteristics of the minor cavity structures in a two-wheel landing Gear[J]. Applied Sciences, 2021, 11(23): 11235. [56] 黄龙龙, 赵鲲, 梁俊彪, 等. 全尺度起落架风洞试验、数值模拟和预测模型数据库软件:2021SR106045[CP]. 绵阳:中国空气动力研究与发展中心, 2021. HUANG L L, ZHAO K, LIANG J B, et al. Full scale landing gear wind tunnel test, numerical simulation and prediction model database software:2021SR106045[CP]. Mianyang: China Aerodynamics Research and Development Center, 2021 (in Chinese). [57] 包安宇, 徐文强, 刘少腾, 等. 全尺寸涡桨飞机起落架气动噪声及控制试验研究[J]. 气动研究与实验, 2021, 33(4): 109-116. BAO A Y, XU W Q, LIU S T, et al. Experimental study of full scale turbo-prop landing gear noise and control method[J]. Aerodynamic Research & Experiment, 2021, 33(4): 109-116 (in Chinese). [58] YOKOKAWA Y, IMAMURA T, URA H, et al. Experimental study on noise generation of a two-wheel main landing gear: AIAA-2010-3973[R]. Reston: AIAA, 2010. [59] PIET J F, MOLIN N, SANDU C. Aircraft landing gear provided with at least one noise reducing means: US20100108805 A1[P]. 2012-05-06. [60] BLAKE W K. Mechanics of flow-induced sound and vibration, Volume 1[M]. 2nd ed. Amsterdam: Elsevier, 2017: 255. [61] ROSSITER J E. Wind tunnel experiments on the flow overrectangular cavities at subsonic and transonic speeds: No. 64037[R]. Farnborough: Ministry of Aviation, Royal Aircraft Establishment, 1964. [62] HELLER H H, HOLMES D G, COVERT E E. Flow-induced pressure oscillations in shallow cavities[J]. Journal of Sound and Vibration, 1971, 18(4): 545-553. [63] BILANIN A J, COVERT E E. Estimation of possible excitation frequencies for shallow rectangular cavities[J]. AIAA Journal, 1973, 11(3): 347-351. [64] TAM C K W, BLOCK P J W. On the tones and pressure oscillations induced by flow over rectangular cavities[J]. Journal of Fluid Mechanics, 1978, 89(2): 373-399. [65] 张强. 流动诱导空腔振荡频率方程的改进[J]. 振动工程学报, 2004, 17(1): 53-57. ZHANG Q. Development of the frequency equation used for prediction of fluid induced pressure oscillation in cavities[J]. Journal of Vibration Engineering, 2004, 17(1): 53-57 (in Chinese). [66] YANG Y, ROCKWELL D, CODY K L F, et al. Generation of tones due to flow past a deep cavity: Effect of streamwise length[J]. Journal of Fluids and Structures, 2009, 25(2): 364-388. [67] MARSDEN O, BOGEY C, BAILLY C. Depth effects on the flow features and noise signature of shallow cylindrical cavities at a Mach number of 0.25[C]//18th AIAA/CEAS Aeroacoustics Conference. Reston: AIAA, 2012. [68] ZIADA S, ROCKWELL D. Vortex-leading-edge interaction[J]. Journal of Fluid Mechanics, 1982, 118: 79. [69] ROCKWELL D, KNISELY C. Observations of the three-dimensional nature of unstable flow past a cavity[J]. Physics of Fluids, 1980, 23(3): 425-431. [70] ROCKWELL D, KNISELY C. Vortex-edge interaction: mechanisms for generating low frequency components[J]. Physics of Fluids, 1980, 23(2): 239-240. [71] GUO Z F, LIU P Q, GUO H. Investigation on spatial distribution of acoustic resonance in annular cavity: Frequency and intensity[J]. International Journal of Aeroacoustics, 2020, 19(1-2): 73-94. [72] GUO Z F, LIU P Q, GUO H. Numerical study on coupling effect of landing gear and cavity noise: AIAA-2019-2507[R]. Reston: AIAA, 2019. [73] CHEVALIER F,AUDOLY C. Turbulent flow-induced self noise and radiated noise in naval systems—An industry point of view[M]//CIAPPI E, DE ROSA S, FRANCO F, et al. Flinovia-Flow induced noise and vibration issues and aspects. Cham: Springer, 2015: 211-225. [74] 吕世金, 张晓伟, 丁灿龙, 等. 水下航行体水动力噪声预报方法及其试验验证[J]. 水动力学研究与进展(A辑), 2019, 34(5): 571-576. LYU S J, ZHANG X W, DING C L, et al. Research on the prediction method of hydrodynamic noise of underwater vehicles and its validation[J]. Chinese Journal of Hydrodynamics, 2019, 34(5): 571-576 (in Chinese). [75] 刘明星, 许欣然, 夏铁坚. 潜艇水动力噪声对声呐声基阵影响分析[J]. 声学与电子工程, 2020(1): 18-22. LIU M X, XU X R, XIA T J. Analysis of the hydrodynamic noise effects on the submarine sonar array[J]. Acoustics and Electronics Engineering, 2020(1): 18-22 (in Chinese). [76] POTT-POLLENSKE M, ALMONEIT D, SAUERESSIG G. A study on landing gear wake-flap interaction noise[C]//23rd AIAA/CEAS Aeroacoustics Conference. Reston: AIAA, 2017. [77] AGRAWAL B R, SHARMA A. Numerical investigations of bio-inspired blade designs to reduce broadband noise in aircraft engines and wind turbines: AIAA-2016-0760[R]. Reston: AIAA, 2016. [78] JACOB M C, BOUDET J, CASALINO D, et al. A rod-airfoil experiment as a benchmark for broadband noise modeling[J]. Theoretical and Computational Fluid Dynamics, 2005, 19(3): 171-196. [79] GIESLER J, SARRADJ E. Measurement of broadband noise generation on rod-airfoil-configurations: AIAA-2009-3308[R]. Reston: AIAA, 2009. [80] LORENZONI V, TUINSTRA M, MOORE P, et al. Aeroacoustic analysis of a rod-airfoil flow by means of time-resolved PIV: AIAA-2009-3298[R]. Reston: AIAA, 2009. [81] MOLIN N, PIET J F, CHOW L C, et al. Prediction of low noise aircraft landing gears and comparison with test results: AIAA-2006-2623[R]. Reston: AIAA, 2006. [82] DOBRZYNSKI W, CHOW L C, SMITH M, et al. Experimental assessment of low noise landing gear component design: AIAA-2009-3276[R]. Reston: AIAA, 2009. [83] ERET P, KENNEDY J, BENNETT G J. Effect of noise reducing components on nose landing gear stability for a mid-size aircraft coupled with vortex shedding and freeplay[J]. Journal of Sound and Vibration, 2015, 354: 91-103. [84] BENNETT G J, NERI E, KENNEDY J. Noise characterization of a full-scale nose landing gear[J]. Journal of Aircraft, 2018, 55(6): 2476-2490. [85] POTT-POLLENSKE M. Low noise ATRA─An aircraft noise reduction study based on retro-fit technologies: AIAA-2021-2117[R]. Reston: AIAA, 2021. [86] ZHAO K, ALIMOHAMMADI S, OKOLO P N, et al. Aerodynamic noise reduction using dual-jet planar air curtains[J]. Journal of Sound and Vibration, 2018, 432: 192-212. [87] ZHAO K, YANG X X, OKOLO P N, et al. Use of a plane jet for flow-induced noise reduction of tandem rods[J]. Chinese Physics B, 2016, 25(6): 064301. [88] ZHAO K, OKOLO P N, KENNEDY J, et al. A study of planar jet flow control and perforated fairings for the reduction of the flow-induced noise of tandem rods in a cross-flow: AIAA-2016-2772[R]. Reston: AIAA, 2016. [89] ANGLAND D, ZHANG X, GOODYER M. Use of blowing flow control to reduce bluff body interaction noise[J]. AIAA Journal, 2012, 50(8): 1670-1684. [90] THOMAS F, KOZLOV A, CORKE T. Plasma actuators for landing gear noise reduction: AIAA-2005-3010[R]. Reston: AIAA, 2005. [91] HUANG X, ZHANG X, LI Y. Broadband flow-induced sound control using plasma actuators[J]. Journal of Sound and Vibration, 2010, 329(13): 2477-2489. [92] SIMON F, GHOUALI A, FASCIO V, et al. Development and assessment of a LEONAR acoustic liner design for landing systems noise minimization[C]//179th Meeting of the Acoustical Society of America, 2020. [93] ZHAO K, LIANG Y, OKOLO P N, et al. Suppression of aerodynamic noise using dual-jet air curtains combined with perforated fairings[J]. Applied Acoustics, 2020, 158: 107042. [94] MURAYAMA M, YOKOKAWA Y, YAMAMOTO K, et al. Computational study of low-noise fairings around tire-axle region of a two-wheel main landing gear[J]. Computers & Fluids, 2013, 85: 114-124. [95] SMITH M, FENECH B, CHOW L, et al. Control of noise sources on aircraft landing gear bogies: AIAA-2006-2626[R]. Reston: AIAA, 2006. [96] KENNEDY J, NERI E, BENNETT G J. The reduction of main landing gear noise: AIAA-2016-2900[R]. Reston: AIAA, 2016. [97] MERINO-MARTÍNEZ R, KENNEDY J, BENNETT G J. Experimental study of realistic low-noise technologies applied to a full-scale nose landing gear[J]. Aerospace Science and Technology, 2021, 113: 106705. [98] BOORSMA K, ZHANG X, MOLIN N, et al. Bluff body noise control using perforated fairings[J]. AIAA Journal, 2009, 47(1): 33-43. [99] LI Y, SMITH M, ZHANG X. Measurement and control of aircraft landing gear broadband noise[J]. Aerospace Science and Technology, 2012, 23(1): 213-223. [100] OKOLO P N, ZHAO K, KENNEDY J, et al. Two-dimensional simplification of complex three-dimensional wire mesh screens[J]. Journal of Aerospace Engineering, 2021, 34(6): 04021098. [101] OERLEMANS S, SANDU C, MOLIN N, et al. Reduction of landing gear noise using meshes[C]//16th AIAA/CEAS Aeroacoustics Conference. Reston: AIAA, 2010. [102] SMITH M, CHOW L, MOLIN N. Control of landing gear noise using meshes: AIAA-2010-3974[R]. Reston: AIAA, 2010. [103] OKOLO P N, ZHAO K, KENNEDY J, et al. Numerical assessment of flow control capabilities of three dimensional woven wire mesh screens[J]. European Journal of Mechanics-B/Fluids, 2019, 76: 259-271. [104] OKOLO P N, ZHAO K, KENNEDY J, et al. Numerical modeling of wire screens for flow and noise control: AIAA-2017-3700[R]. Reston: AIAA, 2017. [105] MURAYAMA M, YAMAMOTO K, YOKOKAWA Y, et al. Noise reduction design for flap side-edges toward FQUROH second flight demonstration: AIAA-2018-4085[R]. Reston: AIAA, 2018. [106] LUO N, LI A G, GAO R, et al. An experiment and simulation of smoke confinement and exhaust efficiency utilizing a modified opposite double-jet air curtain[J]. Safety Science, 2013, 55: 17-25. [107] HUANG R F, CHOU C I. Flow and performance of an air-curtain biological safety cabinet[J]. Annals of Occupational Hygiene, 2009, 53(4): 425-440. [108] ELICER-CORTÉS J C, DEMARCO R, VALENCIA A, et al. Heat confinement in tunnels between two double-stream twin-jet air curtains[J]. International Communications in Heat and Mass Transfer, 2009, 36(5): 438-444. [109] GUPTA S, PAVAGEAU M, ELICER-CORTÉS J C. Cellular confinement of tunnel sections between two air curtains[J]. Building and Environment, 2007, 42(9): 3352-3365. [110] OERLEMANS S, DE BRUIN A. Reduction of landing gear noise using an air curtain: AIAA-2009-3156[R]. Reston: AIAA, 2009. [111] ZHAO K, YANG X X, OKOLO P N, et al. Use of dual planar jets for the reduction of flow-induced noise[J]. AIP Advances, 2017, 7(2): 025312. [112] HE C, CORKE T C, PATEL M P. Plasma flaps and slats: an application of weakly ionized plasma actuators[J]. Journal of Aircraft, 2009, 46(3): 864-873. [113] 吴云, 李应红. 等离子体流动控制研究进展与展望[J]. 航空学报, 2015, 36(2): 381-405. WU Y, LI Y H. Progress and outlook of plasma flow control[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(2): 381-405 (in Chinese). [114] 李应红, 吴云, 梁华, 等. 提高抑制流动分离能力的等离子体冲击流动控制原理[J]. 科学通报, 2010, 55(31): 3063-3071. LI Y H, WU Y, LIANG H, et al. The mechanism of plasma shock flow control for enhancing flow separation control capability[J]. Chinese Science Bulletin, 2010, 55(31): 3063-3071 (in Chinese). [115] 王万波, 章荣平, 黄宗波, 等. 等离子体激励用于两段翼型增升的试验研究[J]. 空气动力学学报, 2013, 31(1): 64-68. WANG W B, ZHANG R P, HUANG Z B, et al. Test research of two-element airfoil lift enhancement by plasma actuator[J]. Acta Aerodynamica Sinica, 2013, 31(1): 64-68 (in Chinese). [116] 张鑫, 黄勇, 阳鹏宇, 等. 等离子体无人机失速分离控制飞行试验[J]. 航空学报, 2018, 39(2): 121587. ZHANG X, HUANG Y, YANG P Y, et al. Flight test of flow separation control using plasma UAV[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(2): 121587 (in Chinese). [117] CHAN S, ZHANG X, GABRIEL S. Attenuation of low-speed flow-induced cavity tones using plasma actuators[J]. AIAA Journal, 2007, 45(7): 1525-1538. [118] HUANG X, CHAN S, ZHANG X, et al. Variable structure model for flow-induced tonal noise control with plasma actuators[J]. AIAA Journal, 2008, 46(1): 241-250. [119] SADDINGTON A J, THANGAMANI V, KNOWLES K. Comparison of passive flow control methods for a cavity in transonic flow[J]. Journal of Aircraft, 2016, 53(5): 1439-1447. [120] SADDINGTON A J, KNOWLES K, THANGAMANI V. Scale effects on the performance of sawtooth spoilers in transonic rectangular cavity flow[J]. Experiments in Fluids, 2015, 57(1): 1-12. [121] NERI E, KENNEDY J, BENNETT G J. Aeroacoustic source separation on a full scale nose landing gear featuring combinations of low noise technologies[C]//ASME 2015 Noise Control and Acoustics Division Conference. New York: ASME, 2015. |
[1] | 宋亚辉, 樊高宇, 瞿丽霞, 张跃林, 徐悦, 韩硕. 航空器声爆飞行试验测量技术研究进展[J]. 航空学报, 2023, 44(2): 626186-626186. |
[2] | 岑飞, 刘志涛, 蒋永, 郭天豪, 张磊, 孔轶男. 民机极限飞行状态非定常气动力建模[J]. 航空学报, 2022, 43(8): 125582-125582. |
[3] | 周宜涛, 杨阳, 吴志刚, 杨超. 大展弦比无人机平台的阵风减缓飞行试验[J]. 航空学报, 2022, 43(6): 526126-526126. |
[4] | 李航行, 胡迪科, 吴邵庆. 复合材料整流罩减振降噪的动力吸振器设计[J]. 航空学报, 2022, 43(5): 225249-225249. |
[5] | 陈广强, 豆国辉, 魏昊功, 邹昕, 李齐, 刘周, 周伟江. 火星探测器大气数据测量方法[J]. 航空学报, 2022, 43(3): 626619-626619. |
[6] | 王猛, 李玉军, 赵荣奂, 衷洪杰. 基于在线加热涂层的宽速域转捩探测技术[J]. 航空学报, 2022, 43(11): 526820-526820. |
[7] | 周桢尧, 吕飞, 周斌, 杨钊. 自然层流减阻验证方法及验证翼段布局设计[J]. 航空学报, 2022, 43(11): 526751-526751. |
[8] | 王浩, 钟敏, 华俊, 钟海, 杨体浩, 王猛, 雷国东. 自然层流飞行测试翼套的仿真和试验[J]. 航空学报, 2022, 43(11): 526785-526785. |
[9] | 陈艺夫, 王一雯, 邓一菊, 王波, 白俊强, 卢磊. 自然层流机翼的翼套试验及数值方法[J]. 航空学报, 2022, 43(11): 526793-526793. |
[10] | 杨超, 邱祈生, 周宜涛, 吴志刚. 飞机阵风响应减缓技术综述[J]. 航空学报, 2022, 43(10): 527350-527350. |
[11] | 付军泉, 史志伟, 耿玺, 朱佳晨, 王力爽, 吴大卫, 潘立军. 基于试验分岔分析的翼身融合飞行器纵向稳定性[J]. 航空学报, 2022, 43(1): 124931-124931. |
[12] | 范振伟, 杨凤田, 李亚东, 项松, 赵为平. 某型双座电动飞机设计与试验[J]. 航空学报, 2021, 42(3): 623972-623972. |
[13] | 周铸, 余永刚, 刘刚, 陈作斌, 何开锋. 飞翼布局组合舵面航向控制特性综合研究[J]. 航空学报, 2020, 41(6): 523422-523422. |
[14] | 岑飞, 聂博文, 刘志涛, 郭林亮, 孙海生, 李清. 面向先进战斗机研制的风洞模型飞行试验技术[J]. 航空学报, 2020, 41(6): 523444-523444. |
[15] | 李秋彦, 李刚, 魏洋天, 冉玉国, 吴波, 谭光辉, 李焱, 陈识, 雷博淇, 徐钦炜. 先进战斗机气动弹性设计综述[J]. 航空学报, 2020, 41(6): 523430-523430. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
访问总数:6658907今日访问:1341版权所有 © 航空学报编辑部
版权所有 © 2011航空学报杂志社
主管单位:中国科学技术协会 主办单位:中国航空学会 北京航空航天大学