[1] MORRELL S, TAYLOR R, LYLE D. A review of health effects of aircraft noise[J]. Australian and New Zealand Journal of Public Health, 1997, 21(2): 221-236. [2] FRANSSEN E A M, VAN WIECHEN C M A G, NAGELKERKE N J D, et al. Aircraft noise around a large international airport and its impact on general health and medication use[J]. Occupational and Environmental Medicine, 2004, 61(5): 405-413. [3] 中国民用航空局. 航空器型号和适航合格审定噪声规定(第二次修订版)[S]. 北京:中国民用航空局, 2018. Civil Aviation Administration of China. Aircraft type and airworthiness certification noise regulations (2nd revised edition)[S]. Beijing: Civil Aviation Administration of China, 2018(in Chinese). [4] 刘沛清, 邢宇, 李玲, 等. 现代大型飞机起落架气动噪声研究进展[J]. 空气动力学学报, 2017, 35(6): 751-759. LIU P Q, XING Y, LI L, et al. Progress in aeroacoustic investigation of modern large aircraft landing gear[J]. Acta Aerodynamica Sinica, 2017, 35(6): 751-759 (in Chinese). [5] LEYLEKIAN L, LEBRUN M, LEMPEREUR P. An overview of aircraft noise reduction technologies[J]. Journal of Aerospace Lab, 2014(7):1-15. [6] DOBRZYNSKI W. Almost 40 years of airframe noise research: What did we achieve?[J]. Journal of Aircraft, 2010, 47(2): 353-367. [7] ZHAO K, OKOLO P, NERI E, et al. Noise reduction technologies for aircraft landing gear—A bibliographic review[J]. Progress in Aerospace Sciences, 2020, 112: 100589. [8] YAMAMOTO K, HAYAMA K, KUMADA T, et al. A flight demonstration for airframe noise reduction technology[J]. CEAS Aeronautical Journal, 2019, 10(1): 77-92. [9] RAVETTA P A, WISDA D M, KHORRAMI M R, et al. Assessment of airframe noise reduction technologies based on EPNL from flight tests: AIAA-2019-2456[R]. Reston: AIAA, 2019. [10] KHORRAMI M R, LOCKARD D P, HUMPHREYS W M, et al. Flight-test evaluation of landing gear noise reduction technologies: AIAA-2019-2455[R]. Reston: AIAA, 2019. [11] MURAYAMA M, YAMAMOTO K, YOKOKAWA Y, et al. Noise reduction design for flap side-edges toward FQUROH flight demonstration: AIAA-2017-4031[R]. Reston: AIAA, 2017. [12] KHORRAMI M R, LOCKARD D P, HUMPHREYS W M, et al. Flight-test evaluation of airframe noise mitigation technologies: AIAA-2018-2972[R]. Reston: AIAA, 2018. [13] RAVETTA P, BURDISSO R, NG W, et al. Screening of potential noise control devices at Virginia tech for QTD II flight test: AIAA-2007-3455[R]. Reston: AIAA, 2007. [14] PIET J F, DAVY R, ELIAS G, et al. Flight test investigation of add-on treatments to reduce aircraft airframe noise: AIAA-2005-3007[R]. Reston: AIAA, 2005. [15] BLISS D, HAYDEN R E. Landing gear and cavity noise prediction: NASA CR-2714[R]. Washington, D.C.: NASA, 1976. [16] FINK M R. Noise component method for airframe noise[J]. Journal of Aircraft, 1979, 16(10): 659-665. [17] FINK M R. Airframe noise prediction method: FAA-RD-77-29[R]. Washington, D.C.: FAA, 1977. [18] SMITH M, CHOW L. Validation of a prediction model for aerodynamic noise from aircraft landing gears: AIAA-2002-2581[R]. Reston: AIAA, 2002. [19] GUO Y P, YAMAMOTO K J, STOKER R W. Component-based empirical model for high-lift system noise prediction[J]. Journal of Aircraft, 2003, 40(5): 914-922. [20] GUO Y P. A statistical model for landing gear noise prediction[J]. Journal of Sound and Vibration, 2005, 282(1-2): 61-87. [21] GUO Y P. A semi-empirical model for aircraft landing gear noise prediction: AIAA-2006-2627[R]. Reston: AIAA, 2006. [22] MERINO-MARTÍNEZ R, NERI E, SNELLEN M, et al. Multi-approach study of nose landing gear noise[J]. Journal of Aircraft, 2020, 57(3): 517-533. [23] 徐康乐, 陈迎春, 徐亮. 基于物理机制模型的民机机体噪声预测[J]. 气体物理, 2021, 6(3): 77-82. XU K L, CHEN Y C, XU L. Physical model-based airframe noise prediction for civil aircraft[J]. Physics of Gases, 2021, 6(3): 77-82 (in Chinese). [24] HELLER H H, DOBRZYNSKI W M. Sound radiation from aircraft wheel-well/landing-gear configurations[J]. Journal of Aircraft, 1977, 14(8): 768-774. [25] KIPERSZTOK O, SENGUPTA G. Flight test of the 747-JT9D for airframe noise[J]. Journal of Aircraft, 1982, 19(12): 1061-1069. [26] LAZOS B S. Mean flow features around the inline wheels of four-wheel landing gear[J]. AIAA Journal, 2002, 40(2): 193-198. [27] RINGSHIA A, RAVETTA P, NG W, et al. Aerodynamic measurements of the 777 main landing gear model: AIAA-2006-2625[R]. Reston: AIAA, 2006. [28] NEUHART D, KHORRAMI M, CHOUDHARI M. Aerodynamics of a Gulfstream G550 nose landing gear model: AIAA-2009-3152[R]. Reston: AIAA, 2009. [29] NING F L, HOU H J, ZHAI Q B, et al. Research on localization of aeroacoustic sources of landing gears[C]//2021 4th International Conference on Information Communication and Signal Processing (ICICSP). Piscataway: IEEE Press, 2021: 279-283. [30] RAVETTA P A, KHORRAMI M R, KONIG B, et al. Analysis of simulated and experimental noise sources of Boeing 777 main gear model via CLEAN in 3D: AIAA-2018-3470[R]. Reston: AIAA, 2018. [31] 宁方立, 刘勇. 飞机起落架的气动噪声源定位研究[J]. 噪声与振动控制, 2018, 38(S2): 615-618. NING F L, LIU Y. Study on localization of aeroacoustic sources of landing gears[J]. Noise and Vibration Control, 2018, 38(S2): 615-618 (in Chinese). [32] 宁方立, 张超, 潘峰, 等. 飞机起落架噪声源定位的压缩感知算法[J]. 航空学报, 2018, 39(5): 121810. NING F L, ZHANG C, PAN F, et al. Compressive sensing algorithm for sound source location of aircraft landing gear[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(5): 121810 (in Chinese). [33] HEDGES L, TRAVIN A, SPALART P. Detached-eddy simulations over a simplified landing gear[J]. Journal of Fluids Engineering, 2002, 124(2): 413-423. [34] LI F, KHORRAMI M, MALIK M. Unsteady simulations of a landing-gear flow field: AIAA-2002-2411[R]. Reston: AIAA, 2002. [35] IMAMURA T, HIRAI T, AMEMIYA K, et al. Aerodynamic and aeroacoustic simulations of a two-wheel landing gear[J]. Procedia Engineering, 2010, 6: 293-302. [36] SPALART P R, SHUR M L, STRELETS M K, et al. Initial noise predictions for rudimentary landing gear[J]. Journal of Sound and Vibration, 2011, 330(17): 4180-4195. [37] BRÈS G A, FREED D, WESSELS M, et al. Flow and noise predictions for the tandem cylinder aeroacoustic benchmark[J]. Physics of Fluids, 2012, 24(3): 036101. [38] LIU W, WOOK KIM J, ZHANG X, et al. Landing-gear noise prediction using high-order finite difference schemes[J]. Journal of Sound and Vibration, 2013, 332(14): 3517-3534. [39] XIAO Z X, LIU J, LUO K Y, et al. Investigation of flows around a rudimentary landing gear with advanced detached-eddy-simulation approaches[J]. AIAA Journal, 2013, 51(1): 107-125. [40] SPALART P R, WETZEL E A. Rudimentary landing gear results at the 2012 BANC-II airframe noise workshop[J]. International Journal of Aeroacoustics, 2015, 14(1-2): 193-216. [41] ALQASH S, DHOTE S, BEHDINAN K. Predicting far-field noise generated by a landing gear using multiple two-dimensional simulations[J]. Applied Sciences, 2019, 9(21): 4485. [42] GUO Z F, LIU P Q, ZHANG J, et al. Numerical simulation of aeroacoustic noise from landing gear and rectangular cavity[J]. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2020, 234(7): 1259-1271. [43] ELKOBY R, BRUSNIAK L, STOKER R, et al. Airframe noise test results from the QTD II flight test program: AIAA-2007-3457[R]. Reston: AIAA, 2007. [44] DOBRZYNSKI W, CHOW L, GUION P, et al. Research into landing gear airframe noise reduction: AIAA-2002-2409[R]. Reston: AIAA, 2002. [45] 乔渭阳, MICHEL U. 基于传声器阵列过顶测量结果的飞机起落架噪声研究[J]. 应用声学, 2001, 20(2): 1-6. QIAO W Y, MICHEL U. A study on landing gear noise based on the fly-over measurements with a planar microphone array[J]. Applied Acoustics, 2001, 20(2): 1-6 (in Chinese). [46] 龙双丽, 聂宏, 薛彩军, 等. 飞机起落架气动噪声特性仿真与试验[J]. 航空学报, 2012, 33(6): 1002-1013. LONG S L, NIE H, XUE C J, et al. Simulation and experiment on aeroacoustic noise characteristics of aircraft landing gear[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(6): 1002-1013 (in Chinese). [47] 龙双丽, 聂宏, 许远, 等. 摇臂式起落架结构件气动噪声试验研究[J]. 实验流体力学, 2012, 26(6): 24-29. LONG S L, NIE H, XU Y, et al. Experiment study on articulated landing gear structure noise[J]. Journal of Experiments in Fluid Mechanics, 2012, 26(6): 24-29 (in Chinese). [48] 邢宇, 刘沛清, 郭昊, 等. 简化起落架噪声相似准则及马赫数比例律[J]. 航空学报, 2017, 38(6): 120769. XING Y, LIU P Q, GUO H, et al. Similarity rule and Mach number scaling law for simplified landing gear noise[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(6): 120769 (in Chinese). [49] 徐康乐, 陈迎春, 江渊, 等. 基于相控麦克风阵列的民机主起落架气动噪声源识别技术研究[J]. 空气动力学学报, 2015, 33(4): 523-529. XU K L, CHEN Y C, JIANG Y, et al. Aerodynamic noise source detection for main landing gear based on phased microphone array technique[J]. Acta Aerodynamica Sinica, 2015, 33(4): 523-529 (in Chinese). [50] KOPIEV V, BELYAEV I, ZAYTSEV M, et al. Experimental study of truncated-cylinder struts for noise reduction of large-scale landing gears[J]. Journal of Sound and Vibration, 2021, 511: 116362. [51] 梁勇, 陈迎春, 赵鲲, 等. 低速开式空腔自激反馈流场结构与流致噪声的风洞试验研究[J]. 声学学报, 2020, 45(6): 859-868. LIANG Y, CHEN Y C, ZHAO K, et al. Wind tunnel experimental study of self oscillation feedback flow field structure and flow induced aeroacoustic for open cavity at low speed[J]. Acta Acustica, 2020, 45(6): 859-868 (in Chinese). [52] ZHAO K, ZHANG R, CAO Q, et al. Experimental investigation of the four-wheel landing gear noise in large-scale configurations[C]//49th International Congress and Exposition on Noise Control Engineering, 2020. [53] KOPIEV V, BELYAEV I, ZAYTSEV M, et al. Experimental study of wheel contribution to large-scale landing gear noise[C]//2020 International Conference on Dynamics and Vibroacoustics of Machines (DVM). Piscataway: IEEE Press, 2020: 1-6. [54] 梁勇, 陈迎春, 赵鲲, 等. 锯齿单元对起落架/舱体耦合噪声抑制试验[J]. 航空学报, 2019, 40(8): 122932. LIANG Y, CHEN Y C, ZHAO K, et al. Test on suppression of aircraft landing gear/bay coupling noise using sawtooth spoiler[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(8): 122932 (in Chinese). [55] HUANG L L, ZHAO K, LIANG J B, et al. A numerical study of the wind speed effect on the flow and acoustic characteristics of the minor cavity structures in a two-wheel landing Gear[J]. Applied Sciences, 2021, 11(23): 11235. [56] 黄龙龙, 赵鲲, 梁俊彪, 等. 全尺度起落架风洞试验、数值模拟和预测模型数据库软件:2021SR106045[CP]. 绵阳:中国空气动力研究与发展中心, 2021. HUANG L L, ZHAO K, LIANG J B, et al. Full scale landing gear wind tunnel test, numerical simulation and prediction model database software:2021SR106045[CP]. Mianyang: China Aerodynamics Research and Development Center, 2021 (in Chinese). [57] 包安宇, 徐文强, 刘少腾, 等. 全尺寸涡桨飞机起落架气动噪声及控制试验研究[J]. 气动研究与实验, 2021, 33(4): 109-116. BAO A Y, XU W Q, LIU S T, et al. Experimental study of full scale turbo-prop landing gear noise and control method[J]. Aerodynamic Research & Experiment, 2021, 33(4): 109-116 (in Chinese). [58] YOKOKAWA Y, IMAMURA T, URA H, et al. Experimental study on noise generation of a two-wheel main landing gear: AIAA-2010-3973[R]. Reston: AIAA, 2010. [59] PIET J F, MOLIN N, SANDU C. Aircraft landing gear provided with at least one noise reducing means: US20100108805 A1[P]. 2012-05-06. [60] BLAKE W K. Mechanics of flow-induced sound and vibration, Volume 1[M]. 2nd ed. Amsterdam: Elsevier, 2017: 255. [61] ROSSITER J E. Wind tunnel experiments on the flow overrectangular cavities at subsonic and transonic speeds: No. 64037[R]. Farnborough: Ministry of Aviation, Royal Aircraft Establishment, 1964. [62] HELLER H H, HOLMES D G, COVERT E E. Flow-induced pressure oscillations in shallow cavities[J]. Journal of Sound and Vibration, 1971, 18(4): 545-553. [63] BILANIN A J, COVERT E E. Estimation of possible excitation frequencies for shallow rectangular cavities[J]. AIAA Journal, 1973, 11(3): 347-351. [64] TAM C K W, BLOCK P J W. On the tones and pressure oscillations induced by flow over rectangular cavities[J]. Journal of Fluid Mechanics, 1978, 89(2): 373-399. [65] 张强. 流动诱导空腔振荡频率方程的改进[J]. 振动工程学报, 2004, 17(1): 53-57. ZHANG Q. Development of the frequency equation used for prediction of fluid induced pressure oscillation in cavities[J]. Journal of Vibration Engineering, 2004, 17(1): 53-57 (in Chinese). [66] YANG Y, ROCKWELL D, CODY K L F, et al. Generation of tones due to flow past a deep cavity: Effect of streamwise length[J]. Journal of Fluids and Structures, 2009, 25(2): 364-388. [67] MARSDEN O, BOGEY C, BAILLY C. Depth effects on the flow features and noise signature of shallow cylindrical cavities at a Mach number of 0.25[C]//18th AIAA/CEAS Aeroacoustics Conference. Reston: AIAA, 2012. [68] ZIADA S, ROCKWELL D. Vortex-leading-edge interaction[J]. Journal of Fluid Mechanics, 1982, 118: 79. [69] ROCKWELL D, KNISELY C. Observations of the three-dimensional nature of unstable flow past a cavity[J]. Physics of Fluids, 1980, 23(3): 425-431. [70] ROCKWELL D, KNISELY C. Vortex-edge interaction: mechanisms for generating low frequency components[J]. Physics of Fluids, 1980, 23(2): 239-240. [71] GUO Z F, LIU P Q, GUO H. Investigation on spatial distribution of acoustic resonance in annular cavity: Frequency and intensity[J]. International Journal of Aeroacoustics, 2020, 19(1-2): 73-94. [72] GUO Z F, LIU P Q, GUO H. Numerical study on coupling effect of landing gear and cavity noise: AIAA-2019-2507[R]. Reston: AIAA, 2019. [73] CHEVALIER F,AUDOLY C. Turbulent flow-induced self noise and radiated noise in naval systems—An industry point of view[M]//CIAPPI E, DE ROSA S, FRANCO F, et al. Flinovia-Flow induced noise and vibration issues and aspects. Cham: Springer, 2015: 211-225. [74] 吕世金, 张晓伟, 丁灿龙, 等. 水下航行体水动力噪声预报方法及其试验验证[J]. 水动力学研究与进展(A辑), 2019, 34(5): 571-576. LYU S J, ZHANG X W, DING C L, et al. Research on the prediction method of hydrodynamic noise of underwater vehicles and its validation[J]. Chinese Journal of Hydrodynamics, 2019, 34(5): 571-576 (in Chinese). [75] 刘明星, 许欣然, 夏铁坚. 潜艇水动力噪声对声呐声基阵影响分析[J]. 声学与电子工程, 2020(1): 18-22. LIU M X, XU X R, XIA T J. Analysis of the hydrodynamic noise effects on the submarine sonar array[J]. Acoustics and Electronics Engineering, 2020(1): 18-22 (in Chinese). [76] POTT-POLLENSKE M, ALMONEIT D, SAUERESSIG G. A study on landing gear wake-flap interaction noise[C]//23rd AIAA/CEAS Aeroacoustics Conference. Reston: AIAA, 2017. [77] AGRAWAL B R, SHARMA A. Numerical investigations of bio-inspired blade designs to reduce broadband noise in aircraft engines and wind turbines: AIAA-2016-0760[R]. Reston: AIAA, 2016. [78] JACOB M C, BOUDET J, CASALINO D, et al. A rod-airfoil experiment as a benchmark for broadband noise modeling[J]. Theoretical and Computational Fluid Dynamics, 2005, 19(3): 171-196. [79] GIESLER J, SARRADJ E. Measurement of broadband noise generation on rod-airfoil-configurations: AIAA-2009-3308[R]. Reston: AIAA, 2009. [80] LORENZONI V, TUINSTRA M, MOORE P, et al. Aeroacoustic analysis of a rod-airfoil flow by means of time-resolved PIV: AIAA-2009-3298[R]. Reston: AIAA, 2009. [81] MOLIN N, PIET J F, CHOW L C, et al. Prediction of low noise aircraft landing gears and comparison with test results: AIAA-2006-2623[R]. Reston: AIAA, 2006. [82] DOBRZYNSKI W, CHOW L C, SMITH M, et al. Experimental assessment of low noise landing gear component design: AIAA-2009-3276[R]. Reston: AIAA, 2009. [83] ERET P, KENNEDY J, BENNETT G J. Effect of noise reducing components on nose landing gear stability for a mid-size aircraft coupled with vortex shedding and freeplay[J]. Journal of Sound and Vibration, 2015, 354: 91-103. [84] BENNETT G J, NERI E, KENNEDY J. Noise characterization of a full-scale nose landing gear[J]. Journal of Aircraft, 2018, 55(6): 2476-2490. [85] POTT-POLLENSKE M. Low noise ATRA─An aircraft noise reduction study based on retro-fit technologies: AIAA-2021-2117[R]. Reston: AIAA, 2021. [86] ZHAO K, ALIMOHAMMADI S, OKOLO P N, et al. Aerodynamic noise reduction using dual-jet planar air curtains[J]. Journal of Sound and Vibration, 2018, 432: 192-212. [87] ZHAO K, YANG X X, OKOLO P N, et al. Use of a plane jet for flow-induced noise reduction of tandem rods[J]. Chinese Physics B, 2016, 25(6): 064301. [88] ZHAO K, OKOLO P N, KENNEDY J, et al. A study of planar jet flow control and perforated fairings for the reduction of the flow-induced noise of tandem rods in a cross-flow: AIAA-2016-2772[R]. Reston: AIAA, 2016. [89] ANGLAND D, ZHANG X, GOODYER M. Use of blowing flow control to reduce bluff body interaction noise[J]. AIAA Journal, 2012, 50(8): 1670-1684. [90] THOMAS F, KOZLOV A, CORKE T. Plasma actuators for landing gear noise reduction: AIAA-2005-3010[R]. Reston: AIAA, 2005. [91] HUANG X, ZHANG X, LI Y. Broadband flow-induced sound control using plasma actuators[J]. Journal of Sound and Vibration, 2010, 329(13): 2477-2489. [92] SIMON F, GHOUALI A, FASCIO V, et al. Development and assessment of a LEONAR acoustic liner design for landing systems noise minimization[C]//179th Meeting of the Acoustical Society of America, 2020. [93] ZHAO K, LIANG Y, OKOLO P N, et al. Suppression of aerodynamic noise using dual-jet air curtains combined with perforated fairings[J]. Applied Acoustics, 2020, 158: 107042. [94] MURAYAMA M, YOKOKAWA Y, YAMAMOTO K, et al. Computational study of low-noise fairings around tire-axle region of a two-wheel main landing gear[J]. Computers & Fluids, 2013, 85: 114-124. [95] SMITH M, FENECH B, CHOW L, et al. Control of noise sources on aircraft landing gear bogies: AIAA-2006-2626[R]. Reston: AIAA, 2006. [96] KENNEDY J, NERI E, BENNETT G J. The reduction of main landing gear noise: AIAA-2016-2900[R]. Reston: AIAA, 2016. [97] MERINO-MARTÍNEZ R, KENNEDY J, BENNETT G J. Experimental study of realistic low-noise technologies applied to a full-scale nose landing gear[J]. Aerospace Science and Technology, 2021, 113: 106705. [98] BOORSMA K, ZHANG X, MOLIN N, et al. Bluff body noise control using perforated fairings[J]. AIAA Journal, 2009, 47(1): 33-43. [99] LI Y, SMITH M, ZHANG X. Measurement and control of aircraft landing gear broadband noise[J]. Aerospace Science and Technology, 2012, 23(1): 213-223. [100] OKOLO P N, ZHAO K, KENNEDY J, et al. Two-dimensional simplification of complex three-dimensional wire mesh screens[J]. Journal of Aerospace Engineering, 2021, 34(6): 04021098. [101] OERLEMANS S, SANDU C, MOLIN N, et al. Reduction of landing gear noise using meshes[C]//16th AIAA/CEAS Aeroacoustics Conference. Reston: AIAA, 2010. [102] SMITH M, CHOW L, MOLIN N. Control of landing gear noise using meshes: AIAA-2010-3974[R]. Reston: AIAA, 2010. [103] OKOLO P N, ZHAO K, KENNEDY J, et al. Numerical assessment of flow control capabilities of three dimensional woven wire mesh screens[J]. European Journal of Mechanics-B/Fluids, 2019, 76: 259-271. [104] OKOLO P N, ZHAO K, KENNEDY J, et al. Numerical modeling of wire screens for flow and noise control: AIAA-2017-3700[R]. Reston: AIAA, 2017. [105] MURAYAMA M, YAMAMOTO K, YOKOKAWA Y, et al. Noise reduction design for flap side-edges toward FQUROH second flight demonstration: AIAA-2018-4085[R]. Reston: AIAA, 2018. [106] LUO N, LI A G, GAO R, et al. An experiment and simulation of smoke confinement and exhaust efficiency utilizing a modified opposite double-jet air curtain[J]. Safety Science, 2013, 55: 17-25. [107] HUANG R F, CHOU C I. Flow and performance of an air-curtain biological safety cabinet[J]. Annals of Occupational Hygiene, 2009, 53(4): 425-440. [108] ELICER-CORTÉS J C, DEMARCO R, VALENCIA A, et al. Heat confinement in tunnels between two double-stream twin-jet air curtains[J]. International Communications in Heat and Mass Transfer, 2009, 36(5): 438-444. [109] GUPTA S, PAVAGEAU M, ELICER-CORTÉS J C. Cellular confinement of tunnel sections between two air curtains[J]. Building and Environment, 2007, 42(9): 3352-3365. [110] OERLEMANS S, DE BRUIN A. Reduction of landing gear noise using an air curtain: AIAA-2009-3156[R]. Reston: AIAA, 2009. [111] ZHAO K, YANG X X, OKOLO P N, et al. Use of dual planar jets for the reduction of flow-induced noise[J]. AIP Advances, 2017, 7(2): 025312. [112] HE C, CORKE T C, PATEL M P. Plasma flaps and slats: an application of weakly ionized plasma actuators[J]. Journal of Aircraft, 2009, 46(3): 864-873. [113] 吴云, 李应红. 等离子体流动控制研究进展与展望[J]. 航空学报, 2015, 36(2): 381-405. WU Y, LI Y H. Progress and outlook of plasma flow control[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(2): 381-405 (in Chinese). [114] 李应红, 吴云, 梁华, 等. 提高抑制流动分离能力的等离子体冲击流动控制原理[J]. 科学通报, 2010, 55(31): 3063-3071. LI Y H, WU Y, LIANG H, et al. The mechanism of plasma shock flow control for enhancing flow separation control capability[J]. Chinese Science Bulletin, 2010, 55(31): 3063-3071 (in Chinese). [115] 王万波, 章荣平, 黄宗波, 等. 等离子体激励用于两段翼型增升的试验研究[J]. 空气动力学学报, 2013, 31(1): 64-68. WANG W B, ZHANG R P, HUANG Z B, et al. Test research of two-element airfoil lift enhancement by plasma actuator[J]. Acta Aerodynamica Sinica, 2013, 31(1): 64-68 (in Chinese). [116] 张鑫, 黄勇, 阳鹏宇, 等. 等离子体无人机失速分离控制飞行试验[J]. 航空学报, 2018, 39(2): 121587. ZHANG X, HUANG Y, YANG P Y, et al. Flight test of flow separation control using plasma UAV[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(2): 121587 (in Chinese). [117] CHAN S, ZHANG X, GABRIEL S. Attenuation of low-speed flow-induced cavity tones using plasma actuators[J]. AIAA Journal, 2007, 45(7): 1525-1538. [118] HUANG X, CHAN S, ZHANG X, et al. Variable structure model for flow-induced tonal noise control with plasma actuators[J]. AIAA Journal, 2008, 46(1): 241-250. [119] SADDINGTON A J, THANGAMANI V, KNOWLES K. Comparison of passive flow control methods for a cavity in transonic flow[J]. Journal of Aircraft, 2016, 53(5): 1439-1447. [120] SADDINGTON A J, KNOWLES K, THANGAMANI V. Scale effects on the performance of sawtooth spoilers in transonic rectangular cavity flow[J]. Experiments in Fluids, 2015, 57(1): 1-12. [121] NERI E, KENNEDY J, BENNETT G J. Aeroacoustic source separation on a full scale nose landing gear featuring combinations of low noise technologies[C]//ASME 2015 Noise Control and Acoustics Division Conference. New York: ASME, 2015. |