收稿日期:
2022-11-15
修回日期:
2022-12-08
接受日期:
2023-01-17
出版日期:
2023-09-15
发布日期:
2023-02-06
通讯作者:
丁军亮
E-mail:dingjl@avic.com
基金资助:
Junliang DING(), Lili ZHAO, Tao YANG, Haini ZHANG, Xiaoxia SHEN
Received:
2022-11-15
Revised:
2022-12-08
Accepted:
2023-01-17
Online:
2023-09-15
Published:
2023-02-06
Contact:
Junliang DING
E-mail:dingjl@avic.com
Supported by:
摘要:
针对自然结冰飞行试验需求,在国内外研究结果的基础上,结合国内飞机自然结冰适航取证飞行试验,系统研究了在国内开展自然结冰试飞的技术难点和实施路径。围绕自然结冰试飞中的结冰气象预测、试飞科目综合设计、安全评估、安全监控以及适航符合性数据分析等难点,开展了自然结冰试飞总体框架、综合试飞策略、试验保障技术、实施决策程序及数据符合性评估等试飞技术体系建设研究。最后,提出了国内航空器结冰研究体系化发展、研究模式变革以及基于飞行试验的自主适航体系建设的研究思路,即通过开展自然结冰研究性试飞和结冰技术基础研究,带动国内防冰技术整体性进步,形成自主可控的设计研发能力和适航标准制定能力。
中图分类号:
丁军亮, 赵利利, 杨涛, 张海妮, 申晓霞. 自然结冰飞行试验技术综述[J]. 航空学报, 2023, 44(17): 28270-028270.
Junliang DING, Lili ZHAO, Tao YANG, Haini ZHANG, Xiaoxia SHEN. Flight test technology of natural icing[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(17): 28270-028270.
表 1
C919飞机自然结冰合格审定试飞涉及适航条款汇总
序号 | 科目 | 适航条款 |
---|---|---|
1 | 飞行品质 | 25.141 9,25.21(g) |
2 | 机翼防冰 | 25.130 1(a)(4),25.135 3(a),25.141 9(b),25.143 1(c),专用条件M-4(25.141 9(g)、(h)),M-6(a)、M-13 |
3 | 发动机 | 25.109 3(b)(1)(i),25.939(a)(c),25.901(b)(2),25.130 1(a4) |
4 | APU | 专用条件M-6(a),25.130 1(a)(4),APU25.152 7(由等效安全P-1引入),APU25.109 3(b)(1)(由等效安全P-1引入) |
5 | 短舱防冰 | 25.939,25.109 3(b)(1)(i),25.130 1(a4),25.135 3(a),25.141 9(b),25.143 1(c),专用条件M-4,M-6(a),M-13 |
6 | 风挡加温 | 25.773(b)(1)(ii),25.773(c),25.130 1(a4),25.135 3(a),25.141 9(b),25.143 1(c),专用条件M-4,M-6(a),M-9(d)(h) |
7 | 大气数据 | 25.130 1(a4),25.132 3(i),25.132 5(b),专用条件M-6(c),专用条件M-6(a),专用条件EE-3 |
8 | 结冰探测 | 25.130 1(a)(4),25.135 3(a),25.143 1(c),专用条件M-4(25.141 9(e)、(f)),专用条件M-6 (a),M-13,EE-3 |
9 | RAT释放 | 25.130 1(a4)、25.135 1(b1) (b6)、25.136 3(b)、25.170 7(b)、专用条件EE-1,M-2,M-6(a) |
1 | FAA. Aircraft icing handbook[M]. Lower Hutt: Civil Aviation Authority, 2000. |
2 | REEHORST A L, ADDY H E, COLANTONIO R O. Examination of icing induced loss of control and it’s mitigtions: AIAA-2010-8140 [R]. Reston: AIAA, 2010. |
3 | GURBACKI H M. Ice-induced unsteady flow field effects on airfoil performance[D]. Urbana: University of Illinois at Urbana-Champaign, 2003. |
4 | REEHORST A, CHUNG J, POTAPCZUK M, et al. Study of icing effects on performance and controllability of an accident aircraft[J]. Journal of Aircraft, 2000, 37(2): 253-259. |
5 | 李哲, 徐浩军, 薛源, 等. 结冰对飞机飞行安全的影响机理与防护研究[J].飞行力学, 2016, 34(4):10-14. |
LI Z, XU H J, XUE Y, et al. Study on the influence mechanism and protection of icing on aircraft flight safety [J]. Flight Mechanics, 2016, 34(4): 10-14 (in Chinese). | |
6 | GREEN S. A study of US inflight icing accidents and incidents, 1978 to 2002[C]∥44th AIAA Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2006. |
7 | APPIAH-KUBI P, MARTOS B, ATUAHENE I, et al. U.S. inflight icing accidents and incidents, 2006 to 2010[C]∥Industrial & Systems Engineering Research Conference A Krishnamurthy & Wkv Chan. 2013. |
8 | 中国民用航空局. CCAR 25-R4: 中国民用航空规章第 25 部: 运输类飞机适航标准 [S]. 北京: 中国民用航空总局, 2011. |
Civil Aviation Administration of China. CCAR 25-R4: Civil Aviation Regulations of China Part 25: Airworthiness Standards for Transport Aircraft [S]. Beijing: General Administration of Civil Aviation of China, 2011 (in Chinese). | |
9 | FAA. FAR 25 airworthiness standards: Transport category airplanes [S].Washington, D.C.: FAA, 2017. |
10 | EASA. CS 25: Certification specifications and acceptable means of compliance for large aeroplanes [S]. Cologne: EASA, 2017. |
11 | FAA. Aircraft ice protection: AC 20-73A[R]. Washington, D.C: FAA, 2006. |
12 | FAA. Flight test guide for certification of transport category airplanes: AC 25-7C[R].Washington, D.C. : FAA, 2012. |
13 | FAA. Turbojet, turboprop, turboshaft, and turbofan engine induction system icing and ice ingestion: AC 20-147A[R]. Washington, D.C.: FAA, 2014. |
14 | FAA. Performance and handling characteristics in icing conditions: AC 25-25A[R]. Washington, D.C.: FAA, 2014. |
15 | FAA. Performance and handling characteristics in icing conditions: AC 25-1419-1A[R]. Washington, D.C.: FAA, 1999. |
16 | FAA. Performance and handling characteristics in icing conditions: AC 25-1419-2[R]. Washington, D.C.: FAA, 2009. |
17 | FAA. Performance and handling characteristics in icing conditions: AC 25-1419-2B[R].Washington, D.C.: FAA, 2009. |
18 | SHIN J, BOND T. Results of an icing test on a NACA 0012 airfoil in the NASA Lewis Icing Research Tunnel[C]∥Proceedings of the 30th Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 1992. |
19 | KIND R J, POTAPCZUK M G, FEO A, et al. Experimental and computational simulation of in-flight icing phenomena[J]. Progress in Aerospace Sciences, 1998, 34(5-6): 257-345. |
20 | POTAPUZCK M G. Aircraft icing research at NASA Glenn Research Center[J]. Journal of Aerospace Engineering, 2013, 26(2): 260-276. |
21 | TIRMIZI S H, GILL W N. Experimental investigation of the dynamics of spontaneous pattern formation during dendritic ice crystal growth[J]. Journal of Crystal Growth, 1989, 96(2): 277-292. |
22 | COOK D, COOK D. Unusual natural icing encounters during Boeing 777 flight tests[C]∥35th Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 1997. |
23 | BERNSTEIN B, CAMPO W, ALGODAL L, et al. The embraer-170 and-190 natural icing flight campaigns: Keys to success[C]∥44th AIAA Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2006. |
24 | 杨新亮. ARJ21-700飞机机翼防冰系统自然结冰试飞方法[J]. 飞行力学, 2014, 32(5): 460-463. |
YANG X L. ARJ21-700 aircraft WAI natural icing flight test approach[J]. Flight Dynamics, 2014, 32(5): 460-463 (in Chinese). | |
25 | SHAW R J. NASA’s aircraft icing analysis program: NASA TM-88791 [R]. Washington, D.C.: NASA, 1986. |
26 | RATVASKY T, VAN ZANTE J, RILEY J. NASA/FAA tailplane icing program overview[C]∥37th Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 1999. |
27 | MILLER D, BERNSTEIN B, MCDONOUGH B, et al. NASA/FAA/NCAR supercooled large droplet icing flight research-Summary of winter 96-97 flight operations[C]∥Proceedings of the 36th AIAA Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 1998. |
28 | BRAGG M B. Experimental aerodynamic characteristics of an NACA 0012 airfoil with simulated glaze ice[J]. Journal of Aircraft, 1988, 25(9): 849-854. |
29 | BROEREN A P, POTAPCZUK M, RILEY J, et al. Swept-wing ice accretion characterization and aerodynamics[C]∥Proceedings of the 5th AIAA Atmospheric and Space Environments Conference. Reston: AIAA, 2013. |
30 | LIBBRECHT K G. Physical dynamics of ice crystal growth[J]. Annual Review of Materials Research, 2017, 47: 271-295. |
31 | FILIP G, MAKI K. Evaluation of advanced turbulence models for high-Reynolds number external flow: Technical Report Number 354 [R]. Ann Arbor: The University of Michigan, 2015. |
32 | BROEREN A P, BRAGG M B, ADDY H E. Flowfield measurements about an airfoil with leading-edge ice shapes[J]. Journal of Aircraft, 2006, 43(4): 1226-1234. |
33 | GREGORY N, O'REILLY C. Low-speed aerodynamic characteristics of NACA 0012 aerofoil sections, including the effects of upper-surface roughness simulation hoar frost[J]. Arc R & M, 1970. DOI:10.1002/chin.199248228 . |
34 | VAN ZANTE J F, RATVASKY T P, BENCIC T J, et al. Update on the NASA Glenn propulsion systems lab icing and ice crystal cloud characterization-2017[C]∥ Proceedings of the 2018 Atmospheric and Space Environments Conference. Reston: AIAA, 2018. |
35 | LERAY W M. We freeze to please: A history of NASA’s icing research tunnel and the quest for flight safety: NASA SP-2002-4226 [R]. Washington, D.C.: NASA, 2002. |
36 | EASA. Certification specifications and acceptable means of compliance for large aeroplanes CS-25 [R]. Cologne: European Aviation Safety Agency, 2015. |
37 | LEROY D, FONTAINE E, SCHWARZENBOECK A, et al. HAIC/HIWC field campaign - specific findings on PSD microphysics in high IWC regions from in situ measurements: Median mass diameters, particle size distribution characteristics and ice crystal shapes[C]∥SAE International Conference on Icing of Aircraft, Engines, and Structures. 2015. |
38 | HARRAH S, STRICKLAND J, HUNT P, et al. Radar detection of high concentrations of ice particles-methodology and preliminary flight test results[C]∥SAE Technical Paper Series. Warrendale: SAE International, 2019. |
39 | ASHLIE F. Ice crystal icing investigation on a honeywell uncertified research engine in an altititude simulation icing facility: ASME GT2020-14714 [R]. New York: ASME, 2020. |
40 | VAN ZANTE J F, RATVASKY T P, BENCIC T J, et al. Update on the NASA Glenn propulsion systems lab icing and ice crystal cloud characterization - 2017[C]∥ Proceedings of the 2018 Atmospheric and Space Environments Conference. Reston: AIAA, 2018. |
41 | KING M C, MANIN J, ZANTE J F V. Particle size calibration testing in the NASA propulsion systems laboratory: AIAA-2018-3971 [R]. Reston: AIAA, 2018. |
42 | von HARDENBERG P H. Analysis of 2018 aerothermal calibration test at NASA propulsion systems laboratory: NASA/TM-20205008430 [R]. Washington, D.C.: NASA, 2020. |
43 | AGUI J H, VON HARDENBERG P, STRUK P M, et al. Cloud uniformity measurement from NASA’s 2nd fundamental ice crystal icing test-part 2 (temperature & humidity): AIAA-2020-2841 [R]. Reston: AIAA, 2020. |
44 | CHEN R C, STRUK P M, RATVASKY T P. Cloud uniformity measurement from NASA’s 2nd fundamental ice crystal icing test part 1 (water content & PSD) : AIAA-2020-2840 [R]. Reston: AIAA, 2020. |
45 | BARTKUS T. Plans for ice crystal icing tests using a 3D heated test article at the NASA icing research tunnel[C]∥2021 AIAA Aviation Forum and Exposition. Reston: AIAA, 2021. |
46 | 常士楠, 韩凤华. 飞机发动机进气道前缘热气防冰器性能分析[J]. 北京航空航天大学学报, 1999, 25(2): 201-203. |
CHANG S N, HAN F H. Performance analysis on hot air anti icer of airplane engine inlet[J]. Journal of Beijing University of Aeronautics and Astronautics, 1999, 25(2): 201-203 (in Chinese). | |
47 | 杨倩, 常士楠, 袁修干. 水滴撞击特性的数值计算方法研究[J]. 航空学报, 2002, 23(2): 173-176. |
YANG Q, CHANG S N, YUAN X G. Study on numerical method for determining the droplet trajectories[J]. Acta Aeronautica et Astronautica Sinica, 2002, 23(2): 173-176 (in Chinese). | |
48 | 吴佩佩, 朱春玲, 刘文平, 等. 过冷大水滴条件下机翼结冰数值仿真[J]. 计算机仿真, 2014, 31(9): 51-55. |
WU P P, ZHU C L, LIU W P, et al. Numerical simulation of aircraft icing under supercooled large droplet conditions[J]. Computer Simulation, 2014, 31(9): 51-55 (in Chinese). | |
49 | 周志宏, 易贤, 郭龙, 等. 一种结冰外形相似度评估方法[J]. 空气动力学学报, 2016, 34(5): 556-561. |
ZHOU Z H, YI X, GUO L, et al. Quantitative method for ice accretions comparison[J]. Acta Aerodynamica Sinica, 2016, 34(5): 556-561 (in Chinese). | |
50 | 卜雪琴, 林贵平. 基于CFD的水收集系数及防冰表面温度预测[J]. 北京航空航天大学学报, 2007, 33(10): 1182-1185. |
BU X Q, LIN G P. Predictions of collection efficiency and anti-icing surface temperature[J]. Journal of Beijing University of Aeronautics and Astronautics, 2007, 33(10): 1182-1185 (in Chinese). | |
51 | 张强, 胡利, 曹义华. 过冷水滴撞击三维机翼的数值模拟[J]. 航空动力学报, 2009, 24(6): 1345-1350. |
ZHANG Q, HU L, CAO Y H. Three-dimensional numerical simulation of supercooled droplets impinging on a wing[J]. Journal of Aerospace Power, 2009, 24(6): 1345-1350 (in Chinese). | |
52 | 李浩然, 段玉宇, 张宇飞, 等. 结冰模拟软件AERO-ICE中的关键数值方法[J]. 航空学报, 2021, 42(S1): 107-122. |
LI H R, DUAN Y Y, ZHANG Y F, et al. Numerical method of ice-accretion software AERO-ICE[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(1): 107-122 (in Chinese). | |
53 | 彭锦峰, 吴东润, 崔为运, 等. 3D打印夹芯复合材料模拟冰型设计与分析[J]. 航空学报, 2021, 42(9): 224536. |
PENG J F, WU D R, CUI W Y, et al. Design and analysis of simulated ice with 3D printed sandwich composite material[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(9): 224536 (in Chinese). | |
54 | 刘藤, 李栋, 黄冉冉, 等. 基于降阶模型的翼型结冰冰形预测方法[J]. 北京航空航天大学学报, 2019, 45(5): 1033-1041. |
LIU T, LI D, HUANG R R, et al. Ice shape prediction method of aero-icing based on reduced order model[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(5): 1033-1041 (in Chinese). | |
55 | 韩志熔, 赵克良, 颜巍. 格尼襟翼在冰风洞混合翼设计中的应用[J]. 航空学报, 2019, 40(2): 522387. |
HAN Z R, ZHAO K L, YAN W. Application of Gurney flap in hybrid-wing design for icing wind tunnel[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(2): 522387 (in Chinese). | |
56 | LANICCI J, HALPERIN D, SHAPPELL S, et al. General aviation weather encounter case studies [S]. Washington, D.C.: FAA, 2012. |
57 | Hacker P T, Dorsch R G. A summary of meteorological conditions associated with aircraft icing and a proposed method of selecting design criterions for ice protection equipment[J]. Technical Report Archive & Image Library, 1951, 15(1260): 633-634. |
58 | CORNELL C D, DONAHUE C A, KEITH C. A comparison of aircraft icing forecast models: AFCCC/TN-95/004 [R]. Oklahoma: Air Force Combat Climatology Center Scott AFB IL, 1995. |
59 | POLITOVICH M, SAND W. A proposed icing severity index based upon meteorology[C]∥4th International Conference on Aviation Weather Systems. 1991: 157-162. |
60 | THOMPSON G, BRUINTJES R T, BROWN B G, et al. Intercomparison of in-flight icing algorithms. part I: WISP94 real-time icing prediction and evaluation program[J]. Weather and Forecasting, 1997, 12(4): 878-889. |
61 | FORBES G S, HU Y, BROWN B G, et al. Examination of conditions in the proximity of pilot reports of aircraft icing during STORM-FEST[C]∥5th International Conference on Aviation Weather Systems. 1993: 282-286 |
62 | MCDONOUGH F, BERNSTEIN B, POLITOVICH M, et al. The forecast icing potential algorithm[C]∥Proceedings of the 42nd AIAA Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2004. |
63 | BERNSTEIN B C, MCDONOUGH F, POLITOVICH M K, et al. Current icing potential: algorithm description and comparison with aircraft observations[J]. Journal of Applied Meteorology, 2005, 44(7): 969-986. |
64 | FERNÁNDEZ-GONZÁLEZ S, SÁNCHEZ J L, GASCÓN E, et al. Weather features associated with aircraft icing conditions: A case study[J]. The Scientific World Journal, 2014, 2014: 1-18. |
65 | MERINO A, GARCÍA-ORTEGA E, FERNÁNDEZ-GONZÁLEZ S, et al. Aircraft icing: In-cloud measurements and sensitivity to physical parameterizations[J]. Geophysical Research Letters, 2019, 46(20): 11559-11567. |
66 | LAWSON P, GURGANUS C, WOODS S, et al. Aircraft observations of cumulus microphysics ranging from the tropics to midlatitudes: implications for a “new” secondary ice process[J]. Journal of the Atmospheric Sciences, 2017, 74(9): 2899-2920. |
67 | COLGAN W, ARENSON L U. Open-pit glacier ice excavation: brief review[J]. Journal of Cold Regions Engineering, 2013, 27(4): 223-243. |
68 | 黄仪方, 朱志愚. 航空气象[M]. 成都: 西南交通大学出版社, 2002. |
HUANG Y F, ZHU Z Y. Aviation meteorology [M]. Chengdu: Southwest Jiaotong University Press, 2002 (in Chinese). | |
69 | 刘开宇, 梁爱民, 高勇. 特大冰雪天气下一次飞机强积冰的数值模拟试验[C]∥中国气象学会年会. 2009. |
LIU K Y, LIANG A M, GAO Y. Numerical simulation test of an aircraft icing in extremely heavy snow and ice weather [C]∥Annual meeting of China Meteorological Society. 2009. | |
70 | POLITOVICH M, WOLFF C, MCDONOUGH F, et al. Potential upgrades to the current and forecast icing algorithms[C]∥Proceedings of the AIAA Atmospheric and Space Environments Conference. Reston: AIAA, 2010. |
71 | 李佰平, 戴建华, 孙敏, 等. 一种改进的飞机自然结冰潜势算法研究[J]. 气象, 2018, 44(11): 1377-1390. |
LI B P, DAI J H, SUN M, et al. An improved aircraft natural icing potential algorithm[J]. Meteorological Monthly, 2018, 44(11): 1377-1390 (in Chinese). | |
72 | BRAGG M B. Rime ice accretion and its effect on airfoil performance[D]. Columbu: The Ohio State University, 1981. |
73 | JANJUA Z A. The influence of freezing and ambient temperature on the adhesion strength of ice[J]. Cold Regions Science and Technology, 2017, 140: 14-19. |
74 | SCAVUZZO R J, CHU M L, KELLACKEY C J. Impact ice stresses in rotating airfoils[J]. Journal of Aircraft, 1991, 28(7): 450-455. |
75 | SCHULSON E M. The structure and mechanical behavior of ice[J]. The Journal of the Minerals, Metals & Materials Society, 1999, 51(2): 21-27. |
76 | SHIBKOV A A, GOLOVIN Y I, ZHELTOV M A, et al. Kinetics and morphology of nonequilibrium growth of ice in supercooled water[J]. Crystallography Reports, 2001, 46(3): 496-502. |
77 | RØNNEBERG S, LAFORTE C, VOLAT C, et al. The effect of ice type on ice adhesion[J]. AIP Advances, 2019, 9(5): 055304. |
78 | EMELYANENKO K A, EMELYANENKO A M, BOINOVICH L B. Water and ice adhesion to solid surfaces: Common and specific, the impact of temperature and surface wettability[J]. Coatings, 2020, 10(7): 648. |
79 | GUO Q, SHEN X B, LIN G P, et al. Experimental analysis on adhesion force between ice and substrate [J]. Aircraft Design, 2019, 4: 33-37. |
80 | 易贤, 桂业伟, 朱国林, 等. 运输机翼型结冰的计算和实验[J]. 航空动力学报, 2011, 26(4): 808-813. |
YI X, GUI Y W, ZHU G L, et al. Experimental and computational investigation into ice accretion on airfoil of a transport aircraft[J]. Journal of Aerospace Power, 2011, 26(4): 808-813 (in Chinese). | |
81 | MILLER R, RIBBENS W. Detection of the loss of elevator effectiveness due to aircraft icing[C]∥37th Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 1999. |
82 | BROEREN A P, BRAGG M B. Flowfield measurements over an airfoil during natural low-frequency oscillations near stall[J]. AIAA Journal, 1999, 37(1): 130-132. |
83 | JUNG S, TIWARI M K, DOAN N V, et al. Mechanism of supercooled droplet freezing on surfaces[J]. Nature Communications, 2012, 3: 615. |
84 | BRAGG M B, BROEREN A P, BLUMENTHAL L A. Iced-airfoil aerodynamics[J]. Progress in Aerospace Sciences, 2005, 41(5): 323-362. |
85 | WANG L P, KONG W L, WANG F X, et al. Effect of nucleation time on freezing morphology and type of a water droplet impacting onto cold substrate[J]. International Journal of Heat and Mass Transfer, 2019, 130: 831-842. |
86 | BELLOSTA T, GUARDONE A, GORI G, et al. Uncertainty quantification for in-flight ice accretion under Appendix-C and Appendix-O conditions[C]∥Proceedings of the AIAA Aviation 2021 Forum. Reston: AIAA, 2021. |
87 | JECK R K. A history and interpretation of aircraft icing intensity definitions and FAA rules for operating in icing conditions: DOT/FAA/AR-01/91 [R]. Washington, D.C.: FAA, 2001. |
88 | KOROLEV A V, STRAPP J W, ISAAC G A, et al. The nevzorov airborne hot-wire LWC-TWC probe: Principle of operation and performance characteristics[J]. Journal of Atmospheric and Oceanic Technology, 1998, 15(6): 1495-1510. |
89 | HO W, HIDY G M, GOVAN R M. Microwave measurements of the liquid water content of atmospheric aerosols[J]. Journal of Applied Meteorology, 1974, 13(8): 871-879. |
90 | BITER C J, DYE J E, HUFFMAN D, et al. The drop-size response of the CSIRO liquid water probe[J]. Journal of Atmospheric and Oceanic Technology, 1987, 4(3): 359-367. |
91 | KING W D, MAHER C T, HEPBURN G A. Further performance tests on the CSIRO liquid water probe[J]. Journal of Applied Meteorology, 1981, 20(2): 195-202. |
92 | JIANG F K, TAI Y C, HO C M, et al. Theoretical and experimental studies of micromachined hot-wire anemometers[C]∥Proceedings of 1994 IEEE International Electron Devices Meeting. Piscataway: IEEE Press, 2002: 139-142. |
93 | BRUUN H H. Hot-wire anemometry: Principles and signal analysis[J]. Measurement Science and Technology, 1996, 7(10): 957. |
[1] | 聂博文, 王亮权, 黄志银, 何龙, 杨仕鹏, 颜鸿涛, 章贵川. 复合式高速无人直升机飞行动力学建模与控制策略设计[J]. 航空学报, 2024, 45(9): 529848-529848. |
[2] | 童晟翔, 史志伟, 耿玺, 王力爽, 孙志坤, 陈其昌. 组合式仿枫树子飞行器与空中分体技术[J]. 航空学报, 2024, 45(6): 629590-629590. |
[3] | 李文龙, 吴波, 谢帅. 有起落架布置的翼身整体结构机翼载荷测量技术[J]. 航空学报, 2024, 45(1): 229525-229525. |
[4] | 高郭池, 张波, 全敬泽, 尹崇, 丁丽, 姜裕标. 正常类飞机自然结冰试飞适航审定技术[J]. 航空学报, 2024, 45(1): 128531-128531. |
[5] | 刘进一, 熊建军, 桂康, 葛俊锋, 叶林. 基于多光谱和复阻抗的复合结冰探测技术[J]. 航空学报, 2023, 44(S2): 729309-729309. |
[6] | 刘冠冕, 张帆, 程志航, 杨康智, 秦何军. 多发螺旋桨飞机结冰气象探测器安装位置研究[J]. 航空学报, 2023, 44(S2): 729295-729295. |
[7] | 张鸿健, 张晏鑫, 熊建军, 赵照, 冉林, 易贤. 冰层中相控阵超声波束传播特性的数值模拟[J]. 航空学报, 2023, 44(S2): 729289-729289. |
[8] | 王琛, 惠倩倩, 张帆. 水空跨域多模态共轴无人机设计[J]. 航空学报, 2023, 44(21): 529047-529047. |
[9] | 杜昕, 朱喆, 胡芳芳, 黄江涛, 刘刚, 章胜, 单恩光, 唐骥罡. 空中无人加油自主对接导航制导与控制[J]. 航空学报, 2023, 44(20): 628827-628827. |
[10] | 宋亚辉, 樊高宇, 瞿丽霞, 张跃林, 徐悦, 韩硕. 航空器声爆飞行试验测量技术研究进展[J]. 航空学报, 2023, 44(2): 626186-626186. |
[11] | 张刘, 黄勇, 陈辅政, 朱正龙, 郭天豪, 姜裕标, 周铸. 基于环量控制的无尾飞翼俯仰和滚转两轴无舵面姿态控制飞行试验[J]. 航空学报, 2023, 44(18): 128224-128224. |
[12] | 章胜, 周攀, 何扬, 黄江涛, 刘刚, 唐骥罡, 贾怀智, 杜昕. 基于深度强化学习的空战机动决策试验[J]. 航空学报, 2023, 44(10): 128094-128094. |
[13] | 邵帅, 郭正, 贾高伟, 陈清阳, 侯中喜, 张来平. 中等展弦比飞翼布局无人机后缘射流滚转控制[J]. 航空学报, 2023, 44(10): 127437-127437. |
[14] | 郭琪磊, 桑为民, 牛俊杰, 袁烨. 复杂气象条件下考虑结冰风险的无人机飞行策略[J]. 航空学报, 2023, 44(1): 627518-627518. |
[15] | 岑飞, 刘志涛, 蒋永, 郭天豪, 张磊, 孔轶男. 民机极限飞行状态非定常气动力建模[J]. 航空学报, 2022, 43(8): 125582-125582. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
版权所有 © 航空学报编辑部
版权所有 © 2011航空学报杂志社
主管单位:中国科学技术协会 主办单位:中国航空学会 北京航空航天大学