[1] CLEMONS L, WLEZIEN R W. Unsteady active flow control on the leading edge of a high-lift configuration thin airfoil[C]//8th AIAA Flow Control Conference. Reston: AIAA, 2016. [2] WILD J. Recent research topics in high-lift aerodynamics[J]. CEAS Aeronautical Journal, 2016, 7(3): 345-355. [3] CAMPBELL R L, LYNDE M N. Natural laminar flow design for wings with moderate sweep[C]//34th AIAA Applied Aerodynamics Conference. Reston: AIAA, 2016. [4] SEITZ A, KRUSE M, WUNDERLICH T, et al. The DLR project LamAiR: Design of a NLF forward swept wing for short and medium range transport application[C]//29th AIAA Applied Aerodynamics Conference. Reston: AIAA, 2011. [5] HAN Z H, CHEN J, ZHANG K S, et al. Aerodynamic shape optimization of natural-laminar-flow wing using surrogate-based approach[J]. AIAA Journal, 2018, 56(7): 2579-2593. [6] DENISON M, PULLIAM T H. Implementation and assessment of the amplification factor transport laminar-turbulent transition model[C]//2018 Fluid Dynamics Conference. Reston: AIAA, 2018. [7] GAO Z H, HUANG J T. Advanced research on laminar flow aerodynamic configuration optimization for green aircraft[C]//AIAA Aviation 2014 Forum. Reston: AIAA, 2014. [8] ZHANG Y F, FANG X M, CHEN H X, et al. Supercritical natural laminar flow airfoil optimization for regional aircraft wing design[J]. Aerospace Science and Technology, 2015, 43: 152-164. [9] ZHAO H, GAO Z H, GAO Y. Design optimization of natural-laminar-flow airfoil for complicated flight conditions[C]//35th AIAA Applied Aerodynamics Conference. Reston: AIAA, 2017. [10] 张启鹏. 超临界自然层流翼型优化方法研究[D]. 南京: 南京航空航天大学, 2018. ZHANG Q P. Optimization methods for supercritical natural laminar airfoils[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2018 (in Chinese). [11] CELLA U, QUAGLIARELLA D, DONELLI R, et al. Design and test of the UW-5006 transonic natural-laminar-flow wing[J]. Journal of Aircraft, 2010, 47(3): 783-795. [12] STREIT T S, SEITZ A, HEIN S, et al. NLF potential of laminar transonic long range aircraft[C]//AIAA Aviation 2020 Forum. Reston: AIAA, 2020. [13] LYNDE M N, CAMPBELL R L, VIKEN S A. Additional findings from the common research model natural laminar flow wind tunnel test[C]//AIAA Aviation 2019 Forum. Reston: AIAA, 2019. [14] BRIGHT M, KORNTHEUER A, KOMADINA S, et al. Development of advanced high lift leading edge technology for laminar flow wings[C]//51st AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. Reston: AIAA, 2013. [15] Boeing Commercial Airplane Group. High Reynolds number hybrid laminar flow control (HLFC) flight experiment II. Aerodynamic design: NASA CR 209324[R].Washington, D.C.: NASA, 1999. [16] Boeing Commercial Airplane Group. High Reynolds number hybrid laminar flow control (HLFC) flight experiment III. Leading edge design, fabrication, and installation: NASA CR 209325[R].Washington, D.C.: NASA, 1999. [17] IANNELLI P, Wild J, MINERVINO M, et al. Design of a high-lift system for a laminar wing[C]//5th European Conference for Aeronautics and Space Sciences (Eucass), 2013. [18] WILD J. Kruger design for an HLFC wing[C]//5th CEAS Air and Space Conference, 2015. [19] FRANKE D M, WILD J. Aerodynamic design of a folded krüger device for a HLFC wing[C]//New Results in Numerical and Experimental Fluid Mechanics X, 2016: 17-27. [20] BOSNYAKOV S, KAZHAN E, KURSAKOV I, et al. Aerodynamic performance of the DeSiReH high-lift laminar wing at free flight and ETW in-tunnel conditions[C]//Progress in Flight Physics - Volume 7. Les Ulis: EDP Sciences, 2015: 33-44. [21] AKAYDIN H D, HOUSMAN J A, KIRIS C C, et al. Computational design of a krueger flap targeting conventional slat aerodynamics[C]//22nd AIAA/CEAS Aeroacoustics Conference. Reston: AIAA, 2016. [22] DAM C P V. The aerodynamic design of multi-element high-lift systems for transport airplanes[J]. Progress in Aerospace Sciences, 2002, 38(2): 101-144. [23] STRUBER H. The aerodynamic design of the A350XWB-900 high-lift system[C]//29th Congress of the International Council of Aeronautical Sciences, 2014. [24] 李高华, 宋文滨, 张淼, 等. 翼型高低速性能优化及其对缝翼设计影响研究[J]. 飞行力学, 2011, 29(5): 31-34, 43. LI G H, SONG W B, ZHANG M, et al. Concurrent optimization of airfoil high/low performance and its impact on slat design[J]. Flight Dynamics, 2011, 29(5): 31-34, 43 (in Chinese). [25] BASHA W A, GHALY W S. Drag prediction in transitional flow over airfoils[J]. Journal of Aircraft, 2007, 44(3): 824-832. [26] FEJTEK I, FEJTEK I. Summary of code validation results for a multiple element airfoil test case[C]//28th Fluid Dynamics Conference. Reston: AIAA, 1997. [27] POWELL N A, CLEMENS A, VELEZ-VALENCIA A, et al. Gulfstream’s contributions to the third AIAA high lift prediction workshop[C]//2018 Applied Aerodynamics Conference. Reston: AIAA, 2018. [28] CODER J G, PULLIAM T H, JENSEN J C. Contributions to HiLiftPW-3 using structured, overset grid methods[C]//2018 AIAA Aerospace Sciences Meeting. Reston: AIAA, 2018. [29] LUO J J, SHI Y J, SONG W B. Finlet optimization for airfoil trailing edge noise minimization using ANN[C]//AIAA Aviation 2020 Forum. Reston: AIAA, 2020. [30] JEONG S, MURAYAMA M, YAMAMOTO K. Efficient optimization design method using Kriging model[J]. Journal of Aircraft, 2005, 42(2): 413-420. |