[1] JUSIONIS V J. Heat transfer from impinging gas jets on an enclosed concave surface[J]. Journal of Aircraft, 1970, 7(1):87-88.
[2] LIVINGOOD J N B, GAUNTNER J W. Average heat-transfer characteristics of a row of circular air jets impinging on a concave surface:NASA TM X-2657[R]. Washington, D.C.:NASA, 1972.
[3] HRYCAK P. Heat transfer from a row of jets impinging on concave semi-cylindrical surface[C]//International Heat Transfer Conference, 1978.
[4] HRYCAK P. Heat transfer and flow characteristics of jets impinging on a concave hemispherical plate[C]//Heat transfer Proceedings of the Seventh International Conference, 1982.
[5] HOLLWORTH B R, WILSON S I. Entrainment effects on impingement heat transfer. I Measurements of heated jet velocity and temperature distributions, and recovery temperatures on target surface[J]. Journal of Heat Transfer, 1983, 106(4):797-803.
[6] HOLLWORTH B R, GERO L R. Entrainment effects on impingement heat transfer. II-Local heat transfer measurements[C]//National Heat Transfer Conference, 1984.
[7] GOLDSTEIN R J, SOBOLIK K A, SEOL W S. Effect of entrainment on the heat transfer to a heated circular air jet impinging on a flat surface[J]. Journal of Heat Transfer, 1990, 112(3):608-611.
[8] FENOT M, VULLIERME J J, DORIGNAC E. Local heat transfer due to several configurations of circular air jets impinging on a flat plate with and without semi-confinement[J]. International Journal of Thermal Sciences, 2005, 44(7):665-675.
[9] LIVINGOOD J N B, GAUNTNER J W. Local heat-transfer characteristics of a row of circular air jets impinging on a concave semicylindrical surface:NASA TN D-7127[R]. Washington, D.C.:NASA, 1973.
[10] IACOVIDES H, KOUNADIS D, LAUNDER B E, et al. Experimental study of the flow and thermal development of a row of cooling jets impinging on a rotating concave surface[J]. Journal of Turbomachinery, 2004, 127(1):222-229.
[11] IMBRIALE M, IANIRO A, MEOLA C, et al. Convective heat transfer by a row of jets impinging on a concave surface[J]. International Journal of Thermal Sciences, 2014, 75(1):153-163.
[12] HOSSEINALIPOUR S M, MUJUMDAR A S. Comparative evaluation of different turbulence models for confined impinging and opposing jet flows[J]. Numerical Heat Transfer Applications, 1995, 28(6):647-666.
[13] SEYEDEIN S H, HASAN M, MUJUMDAR A S. Modelling of a single confined turbulent slot jet impingement using various k-ω turbulence models[J]. Applied Mathematical Modelling, 1994, 18(10):526-537.
[14] WANG S J, MUJUMDAR A S. A comparative study of five low Reynolds number k-ε models for impingement heat transfer[J]. Applied Thermal Engineering, 2005, 25(1):31-44.
[15] SHARIF M A R, MOTHE K K. Evaluation of turbulence models in the prediction of heat transfer due to slot jet impingement on plane and concave surfaces[J]. Numerical Heat Transfer Fundamentals, 2009, 55(4):273-294.
[16] KUMAR B V N R, PRASAD B V S S S. Computational flow and heat transfer of a row of circular jets impinging on a concave surface[J]. Heat & Mass Transfer, 2008, 44(6):667-678.
[17] SHARIF M A R, MOTHE K K. Parametric study of turbulent slot-jet impingement heat transfer from concave cylindrical surfaces[J]. International Journal of Thermal Sciences, 2010, 49(2):428-442.
[18] MATTOS B S, OLIVEIRA G L. Three-dimensional thermal coupled analysis of a wing slice slat with a piccolo tube:AIAA-2000-3921[R]. Reston:AIAA, 2000.
[19] PLANQUART P H. Experimental and numerical optimization of a wing leading edge hot air anti-icing system:AIAA-2005-1277[R]. Reston:AIAA, 2005.
[20] LIU H H T, HUA J. Three-dimensional integrated thermodynamic simulation for wing anti-Icing system[J]. Journal of Aircraft, 2004, 41(6):1291-1297.
[21] FREGEAU M, SAEED F, PARASCHIVOIU I. Surface heat transfer study for ice accretion and anti-icing prediction in three dimension:AIAA-2004-0063[R]. Reston:AIAA, 2004.
[22] WANG H. Anti-icing simulation in wet air of a piccolo system using FENSAP-ICE:SAE-2007-01-3357[R]. New York:SAE, 2007.
[23] 裘燮纲, 余小章. 微引射防冰腔热力计算[J]. 航空学报, 1994, 15(9):1110-1113. QIU X G, YU X Z. Thermal calculation for anti-icer with micro-ejector[J]. Acta Aeronautica et Astronautica Sinica, 1994, 15(9):1110-1113(in Chinese).
[24] 梁青森, 陈维建, 马辉,等. 微引射热气除冰腔引射性能分析[J]. 南京航空航天大学学报, 2013, 45(3):341-346. LIANG Q S, CHEN W J, MA H, et al. Injection performance of hot-air de-icer with micro-injector[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2013, 45(3):341-346(in Chinese).
[25] 彭珑, 卜雪琴, 林贵平, 等. 热气防冰腔结构参数对其热性能影响研究[J]. 空气动力学学报, 2014, 32(6):848-853. PENG L, BU X Q, LIN G P, et al. Influence of the structural parameters on thermal performance of the hot air anti-icing system[J]. Acta Aerodynamica Sinica, 2014, 32(6):848-853(in Chinese).
[26] HANNAT R, MORENCY F. Numerical validation of conjugate heat transfer method for anti-/de-icing piccolo system[J]. Journal of Aircraft, 2014, 51(1):104-116.
[27] GOLDSTEIN R J, BEHBAHANI A I, HEPPELMANN K K. Streamwise distribution of the recovery factor and the local heat transfer coefficient to an impinging circular air jet[J]. International Journal of Heat & Mass Transfer, 1986, 29(8):1227-1235. |