1 |
桂业伟, 周志宏, 李颖晖, 等. 关于飞机结冰的多重安全边界问题[J]. 航空学报, 2017, 38(2): 520734.
|
|
GUI Y W, ZHOU Z H, LI Y H, et al. Multiple safety boundaries protection on aircraft icing[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(2): 520734 (in Chinese).
|
2 |
李浩然, 段玉宇, 张宇飞, 等. 结冰模拟软件AERO-ICE中的关键数值方法[J]. 航空学报, 2021, 42(S1): 726371.
|
|
LI H R, DUAN Y Y, ZHANG Y F, et al. Numerical method of ice-accretion software AERO-ICE[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(S1): 726371 (in Chinese).
|
3 |
APPIAH-KUBI P. U.S inflight icing accidents and incidents, 2006 to 2010[D]. Knoxville: University of Tennessee, 2011.
|
4 |
GREEN S. A study of U.S. inflight icing accidents and incidents, 1978 to 2002[C]∥ 44th AIAA Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2006.
|
5 |
周志宏, 易贤, 桂业伟, 等. 过冷大水滴条件下结冰风洞试验中模型参数的计算方法: CN104268399A[P]. 2015-01-07.
|
|
ZHOU Z H, YI X, GUI Y W, et al. Computing method of model parameters in icing wind tunnel experiment under supercooled large droplet condition: CN104268399A[P]. 2015-01-07 (in Chinese).
|
6 |
杨倩, 董威, 郭之强, 等. 涡扇发动机短舱结冰试验相似方法[J]. 航空动力学报, 2019, 34(9): 1988-2000.
|
|
YANG Q, DONG W, GUO Z Q, et al. Scaling method of turbofan engine nacelle under icing test[J]. Journal of Aerospace Power, 2019, 34(9): 1988-2000 (in Chinese).
|
7 |
郁嘉, 卜雪琴, 林贵平, 等. 非结冰气象条件下机翼热气防冰系统数值模拟[J]. 空气动力学学报, 2016, 34(5): 562-567.
|
|
YU J, BU X Q, LIN G P, et al. Numerical simulation of a wing hot air anti-icing system in dry air conditions[J]. Acta Aerodynamica Sinica, 2016, 34(5): 562-567 (in Chinese).
|
8 |
郭之强, 郑梅, 董威, 等. 表面凸起对机翼热气防冰腔内换热强化的影响[J]. 航空学报, 2017, 38(2): 520709.
|
|
GUO Z Q, ZHENG M, DONG W, et al. Influence of surface convex on heat transfer enhancement of wing hot air anti-icing system[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(2): 520709 (in Chinese).
|
9 |
姜萍. 飞行器热气防冰系统数值模拟与设计[D]. 南京: 南京航空航天大学, 2017.
|
|
JIANG P. Numerical simulation and design of airplane’s hot-air anti-icing system[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2017 (in Chinese).
|
10 |
郭辉, 徐浩军, 刘凌. 基于回归型支持向量机的空战目标威胁评估[J]. 北京航空航天大学学报, 2010, 36(1): 123-126.
|
|
GUO H, XU H J, LIU L. Target threat assessment of air combat based on support vector machines for regression[J]. Journal of Beijing University of Aeronautics and Astronautics, 2010, 36(1): 123-126 (in Chinese).
|
11 |
POURBAGIAN M, TALGORN B, HABASHI W G, et al. Constrained problem formulations for power optimization of aircraft electro-thermal anti-icing systems[J]. Optimization and Engineering, 2015, 16(4): 663-693.
|
12 |
YONDO R, ANDRÉS E, VALERO E. A review on design of experiments and surrogate models in aircraft real-time and many-query aerodynamic analyses[J]. Progress in Aerospace Sciences, 2018, 96: 23-61.
|
13 |
叶年辉, 龙腾, 武宇飞, 等. 基于Kriging代理模型的约束差分进化算法[J]. 航空学报, 2021, 42(6): 324580.
|
|
YE N H, LONG T, WU Y F, et al. Kriging-assisted constrained differential evolution algorithm[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(6): 324580 (in Chinese).
|
14 |
张智超, 高太元, 张磊, 等. 基于径向基神经网络的气动热预测代理模型[J]. 航空学报, 2021, 42(4): 524167.
|
|
ZHANG Z C, GAO T Y, ZHANG L, et al. Aeroheating agent model based on radial basis function neural network[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(4): 524167 (in Chinese).
|
15 |
ROWLEY C W. Model reduction for fluids, using balanced proper orthogonal decomposition[J]. International Journal of Bifurcation and Chaos, 2005, 15(3): 997-1013.
|
16 |
PINNAU R. Model reduction via proper orthogonal decomposition[M]∥Model Order Reduction: Theory, Research Aspects and Applications. Berlin, Heidelberg: Springer, 2008: 95-109.
|
17 |
VOLKWEIN S. Model reduction using proper orthogonal decomposition[R]. Graz: Institute of Mathematics and Scientific Computing, University of Graz, 2011.
|
18 |
蒋耀林. 模型降阶方法[M]. 北京: 科学出版社, 2010.
|
|
JIANG Y L. Model reduction method[M]. Beijing: Science Press, 2010 (in Chinese).
|
19 |
STEIN M. Large sample properties of simulations using Latin hypercube sampling[J]. Technometrics, 1987, 29(2): 143-151.
|
20 |
SMOLA A J, SCHÖLKOPF B. A tutorial on support vector regression[J].Statistics and Computing, 2004, 14(3): 199-222.
|
21 |
AWAD M, KHANNA R. Support vector regression[M]∥Efficient Learning Machines. Berkeley: Apress, 2015: 67-80.
|
22 |
SIROVICH L. Turbulence and the dynamics of coherent structures. I. Coherent structures[J]. Quarterly of Applied Mathematics, 1987, 45(3): 561-571.
|
23 |
SIROVICH L. Turbulence and the dynamics of coherent structures. II. Symmetries and transformations[J]. Quarterly of Applied Mathematics, 1987, 45(3): 573-582.
|
24 |
SIROVICH L. Turbulence and the dynamics of coherent structures. III. Dynamics and scaling[J]. Quarterly of Applied Mathematics, 1987, 45(3): 583-590.
|
25 |
陈希, 招启军. 考虑遮蔽区影响的旋翼三维水滴撞击特性计算新方法[J]. 航空学报, 2017, 38(6): 120745.
|
|
CHEN X, ZHAO Q J. New method for predicting 3-D water droplet impingement on rotor considering influence of shadow zone[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(6): 120745 (in Chinese).
|
26 |
ZHU J, DONG W, ZHENG M, et al. Numerical investigation of heat and mass transfer on an anti-icing inlet cone[J]. Journal of Propulsion and Power, 2016, 32(3): 789-797.
|
27 |
DONG W, ZHU J, ZHOU Z X, et al. Heat transfer and temperature analysis of an aeroengine strut under icing conditions[J]. Journal of Aircraft, 2015, 52(1): 216-225.
|
28 |
SAN J Y, CHEN J J. Effects of jet-to-jet spacing and jet height on heat transfer characteristics of an impinging jet array[J]. International Journal of Heat and Mass Transfer, 2014, 71: 8-17.
|
29 |
GOLDSTEIN R J, BEHBAHANI A I, HEPPELMANN K K. Streamwise distribution of the recovery factor and the local heat transfer coefficient to an impinging circular air jet[J]. International Journal of Heat and Mass Transfer, 1986, 29(8): 1227-1235.
|
30 |
邱亚松, 白俊强, 华俊. 基于本征正交分解和代理模型的流场预测方法[J]. 航空学报, 2013, 34(6): 1249-1260.
|
|
QIU Y S, BAI J Q, HUA J. Flow field estimation method based on proper orthogonal decomposition and surrogate model[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(6): 1249-1260 (in Chinese).
|