[1] WALTRUP P J. Liquid fueled supersonic combustion ramjets:a research perspective of the past, present and future:AIAA-1986-0158[R]. Reston:AIAA, 1986.
[2] SIKRORIA T, KUSHARI A, SYED S, et al. Experimental investigation of liquid jet breakup in a cross flow of a swirling air stream[J]. Journal of Engineering for Gas Turbines and Power, 2014, 136(6):061501.
[3] CHAULIN A, DANIEL E, CHINNAYYA A, et al. Shock waves in sprays:numerical study of secondary atomization and experimental comparision[J]. Shock Waves, 2015, 26(4):403-415.
[4] LADA C, KONTIS K. Fluidic control of cavity configurations at subsonic and supersonic speeds:AIAA-2005-1293[R]. Reston:AIAA, 2005.
[5] ZHUANG N, ALVI F S, SHIH C. Another look at supersonic cavity flows and their control:AIAA-2005-2803[R]. Reston:AIAA, 2005.
[6] BARNES F W, SEGAL C. Cavity-based flameholding for chemically-reacting supersonic flows[J]. Progress in Aerospace Sciences, 2015,76:24-41.
[7] HSU K, GOSS L, TRUMP D. Performance of a trapped-vortex combustor:AIAA-1995-0810[R]. Reston:AIAA, 1995.
[8] ROQUEMORE W, SHOUSE D, BURRUS D, et al. Vortex combustor concept for gas turbine engines:AIAA-2001-0483[R]. Reston:AIAA, 2001.
[9] JIN Y, HE X, ZHANG J, et al. Experimental study on emission performance of a LPP/TVC[J]. Chinese Journal of Aeronautics, 2012, 25(3):335-341.
[10] ZHANG X, EDWARDS J A. Experimental investigation of supersonic flow over two cavities in tandem[J]. AIAA Journal, 1992, 30(5):1182-1190.
[11] BAO H, ZHOU J, PAN Y, et al. Spark ignition of liquid kerosene in scramjet combustor equipped with partly-covered cavity[J]. Journal of Propulsion and Power, 2015, 31(4):1014-1018.
[12] MCDANIEL J C, CHELLIAH H, GOYNE C P, et al. US national center for hypersonic combined cycle propulsion:an overview:AIAA-2009-7280[R]. Reston:AIAA, 2009.
[13] FETTERHOFF T, BURFITT J. Overview of the advanced propulsion test technology hypersonic aero propulsion clean air test:AIAA-2011-2279[R].Reston:AIAA, 2011.
[14] HASSAN E. Multi-fluid dynamics for supersonic jet-and-crossflows and liquid plug rupture[D]. Ann Arbor:University of Michigan, 2012:25-40.
[15] SEVCENCO Y A, MOJARRAD M G, MARSH R, et al. Integrating hypersonics into a combustion test facility with 3D viewing capability:AIAA-2015-3654[R].Reston:AIAA,2015.
[16] 邓维鑫. 宽范围马赫数超燃冲压发动机燃烧组织技术研究[D]. 成都:西南交通大学, 2013:41-53. DENG W X. Research on combustion organizing technology of scramjet in wide range Mach number[D]. Chengdu:Southwest Jiaotong University, 2013:41-53(in Chinese).
[17] VEYNANTE D, VERVISCH L. Turbulent combustion modeling[J]. Progress in Energy and Combustion Science, 2002(28):193-266.
[18] 中国科学院高超声速科技中心. CASH-001:直联式超声速模型燃烧室[EB/OL]. (2010-03-09)[2016-04-23]. http://www.hrccas.com/newshow.asp?pkid=26.
[19] WILCOX D C. Turbulent modeling for CFD[M]. California:DCW Industries, 2000:74-80.
[20] O'BYRNE S, DOOLAN M, OLSEN S, et al. Analysis of transient thermal choking process in a model scramjet engine[J]. Journal of Propulsion and Power, 2000, 16(5):808-814.
[21] MITANI T, KOUCHI T. Flame structures and combustion efficiency computed for a Mach 6 scramjet engine[J]. Combustion and Flame, 2005, 142(3):187-196.
[22] 潘余. 超燃冲压发动机多凹腔燃烧室燃烧与流动过程研究[D]. 长沙:国防科学技术大学, 2007:23-52. PAN Y. Research on the combustion and flow process in the scramjet multi-cavity combustor[D]. Changsha:National University of Defense Technology, 2007:23-52(in Chinese). |