航空学报 > 2011, Vol. 32 Issue (6): 971-977   doi: CNKI:11-1929/V.20110120.1729.005

减小翼型激波阻力的鼓包流动控制技术

李沛峰1, 张彬乾1, 陈迎春2, 陈真利1   

  1. 1. 西北工业大学 航空学院, 陕西 西安 710072;
    2. 上海飞机设计研究所, 上海 200232
  • 收稿日期:2010-09-13 修回日期:2010-11-15 出版日期:2011-06-25 发布日期:2011-06-24
  • 通讯作者: Tel.:029-88494846 E-mail: bqzhang@nwpu.edu.cn E-mail:bqzhang@nwpu.edu.cn
  • 作者简介:李沛峰(1982- ) 男, 博士研究生。 主要研究方向: 飞行器气动布局设计。 Tel: 029-88494846 E-mail: leeona@163.com 张彬乾(1952- ) 男, 教授, 博士生导师。 主要研究方向: 飞行器气动布局设计、 流动控制等。 Tel: 029-88494846 E-mail: bqzhang@nwpu.edu.cn 陈迎春(1961- ) 男, 博士, 副总师,教授。 主要研究方向: 飞机总体与气动设计。 Tel: 021-54100171 E-mail: chenyingchun@comac.cc 陈真利(1981- ) 男, 博士研究生。 主要研究方向: 数值计算、 飞行器气动布局设计。 Tel: 029-88494846 E-mail: ginguadaosck@yahoo.com.cn

Wave Drag Reduction of Airfoil with Shock Control Bump

LI Peifeng1, ZHANG Binqian1, CHEN Yingchun2, CHEN Zhenli1   

  1. 1. College of Aeronautics, Northwestern Polytechnical University, Xi’an 710072, China;
    2. Shanghai Aircraft Design and Research Institute, Shanghai 200232, China
  • Received:2010-09-13 Revised:2010-11-15 Online:2011-06-25 Published:2011-06-24

摘要: 针对2020年使用的N+2代民用飞机的翼身融合(BWB)布局发展需要,以减小激波阻力为目标,采用计算流体力学(CFD)方法,开展弱化激波、减小激波阻力的鼓包流动控制技术研究。提出了λ形激波结构"强干扰"和等熵压缩"弱干扰"两种鼓包激波减阻流动控制原理,给出了两种鼓包基本形状设计方法和工程应用的可行性分析,指出λ形激波结构鼓包更易于在工程上实现。系统研究了产生λ形激波结构的鼓包位置、高度和长度等参数对控制激波与减小波阻的影响规律,提出了鼓包参数选择原则。研究结果表明,以激波强度和位置为依据,通过鼓包参数优化匹配,可达到弱化激波、减小波阻的目的,减阻效果显著,对RAE2822和NACA0012翼型的最大减阻量分别可达到21%和12%。

关键词: 鼓包, 翼型, 激波, 减阻, 流动控制

Abstract: In order to meet the development requirements of the blended wing body (BWB) configuration for N+2 generation civil transport aircraft in 2020, this paper establishes a goal of reducing the wave drag, and uses a shock control bump to weaken the shock and hence reduce the wave drag by a computational fluid dynamics(CFD) method. Bump control principles besed on strong disturbance created by the λ shock structure and weak disturbance created by infinitely quasi-isentropic shocks are put forward; the geometric design method and engineering feasibility analysis of the two different bumps are studied. The results show that the bump based on a λ shock structure can be easily realized in engineering applications. The parameters of the length, height and location of the bump which produces a λ shock structure are investigated in detail so as to find their impact on wave drag reduction and yield the principles for parameter selection. It can be concluded that the best matching of these parameters with regard to such flow conditions as shock strength and its location can realize obvious drag reduction, the results show that the maximal drag reduction can reach 21% for RAE2822 and 12% for NACA0012.

Key words: bump, airfoil, shock waves, drag reduction, flow control

中图分类号: