[1] Fricke J, Emmerling A. Aerogels[J]. Journal of American Ceramic Society, 1992, 75(8): 2027-2036.
[2] Pierre A C, Pajonk G M. Chemistry of aerogels and their applications[J]. Chemical Review, 2002, 102(11): 4243-4265.
[3] Fricke J, Emmerling A. Aerogels—preparation, properties, applications[J]. Structure and Bonding, 1992, 77: 37-87.
[4] 陈海宁, 邢雅兰, 李哲, 等. SiO2溶胶作用下电沉积锌电极性能研究[J]. 航空学报, 2009, 30(6): 1150-1155. Chen Haining, Xing Yalan, Li Zhe, et al. Effect of SiO2 sol on performance of electrodeposited zinc electrodes[J]. Acta Aeronautica et Astronautica Sinica, 2009, 30(6): 1150-1155. (in Chinese)
[5] Jones S M. Aerogel: space exploration applications[J]. Journal of Sol-Gel Science and Technology, 2006, 40(2): 351-357.
[6] 杜艾. 无机分散溶胶凝胶法制备块体氧化物气凝胶:合成、机理与应用. 上海:同济大学物理系, 2010. Du Ai. Monolithic oxidic aerogels via dispersed inorganic sol-gel method: synthesis, mechanism and applications. Shanghai: Department of Physics, Tongji University, 2010. (in Chinese)
[7] Nicolaon G A, Teichner S J. New preparation process for silica xerogels and aerogels, and their textural properties[J]. Bulleti de la Societe Chimique de France, 1968(5): 1900-1906.
[8] Hrubesh L W, Tillotson T M, Poco J F. Characterization of ultralow-density silica aerogels made from a condensed silica precursor[J]. Materials Research Society Symposium Proceedings, 1990, 180: 315-319.
[9] 徐超, 周斌, 吴广明, 等. 超低密度SiO2气凝胶的制备及成型研究[J]. 强激光与粒子束, 2005, 17(11):1674-1678. Xu Chao, Zhou Bin, Wu Guangming, et al. Preparation and molding of ultralow-density silica aerogels[J]. High Power Laser and Particle Beams, 2005, 17(11): 1674-1678. (in Chinese)
[10] Pekala R W. Low density, resorcinol-formaldehyde aerogels: United States Patent, 4997804. 1991-05-03.
[11] Even W R, Crocker R W, Hunter M C, et al. Surface and near-surface structure in carbon microcellular materials produced from organic aerogels and xerogels[J]. Journal of Non-Crystalline Solids, 1995, 186: 191-199.
[12] Lu X, Arduini-Schuster M C, Kuhn J, et al. Thermal conductivity of monolithic organic aerogels[J]. Science, 1992, 255(5047): 971-972.
[13] 杜艾, 周斌, 沈军, 等. 块体气凝胶的通用制备方法进展[J]. 原子能科学技术, 2010, 44(8):1006-1013. Du Ai, Zhou Bin, Shen Jun, et al. Progress on universal methods to prepare monolithic aerogels[J]. Atomic Energy Science and Technology, 2010, 44(8): 1006-1013. (in Chinese)
[14] 杜艾, 李宇农, 周斌, 等. ICF用铜基低密度气凝胶靶材料研制[J]. 原子能科学技术, 2008, 42(9):794-798. Du Ai, Li Yunong, Zhou Bin, et al. Preparation method of monolithic copper oxide aerogels[J]. Atomic Energy Science and Technology, 2008, 42(9): 794-798. (in Chinese)
[15] Du A, Zhou B, Shen J, et al. Monolithic copper oxide aerogel via dispersed inorganic sol-gel method[J]. Journal of Non-Crystalline Solids, 2009, 355(3): 175-181.
[16] 肖淑芳, 周斌, 万慧军, 等. 无机分散溶胶-凝胶法制备块状锂基气凝胶[J]. 原子能科学技术, 2008, 42(S1):21-25. Xiao Shufang, Zhou Bin, Wan Huijun, et al. Monolithic lithium-based aerogels via dispersed inorganic sol-gel method[J]. Atomic Energy Science and Technology, 2008, 42(S1): 21-25. (in Chinese)
[17] Mohanan J L, Brock S L. A new addition to the aerogel community: unsupported CdS aerogels with tunable optical properties[J]. Journal of Non-Crystalline Solids, 2004, 350: 1-8.
[18] Utamapanya S, Klabunde K J, Schlup J R. Nanoscale metal oxide particles/clusters as chemical reagents: synthesis and properties of ultrahigh surface area magnesium hydroxide and magnesium oxide[J]. Chemistry of Materials, 1991, 3(1): 175-181.
[19] Wu G M, Wang A R, Zhang M X, et al. Investigation on properties of V2O5-MWCNTs composites as cathode materials[J]. Journal of Sol-Gel Science and Technology, 2008, 46(1): 79-85.
[20] Hassan S, Hector A L, Hyde J R, et al. A non-oxide sol-gel route to synthesise silicon imidonitride monolithic gels and high surface area aerogels[J]. Chemical Communications, 2008(42): 5304-5306.
[21] Fricke J, Caps R. Heat transfer in thermal insulations: Recent progress in analysis[J]. International Journal of Thermophysics, 1988, 9(5): 885-895.
[22] Fesmire J E, Sass J P. Aerogel insulation applications for liquid hydrogen launch vehicle tanks[J]. Cryogenics, 2008, 48(5-6): 223-231.
[23] Fesmire J E. Aerogel insulation systems for space launch applications[J]. Cryogenics, 2006, 46(2-3): 111-117.
[24] 沈军, 周斌, 吴广明, 等. 纳米孔超级绝热材料气凝胶的制备与热学特性[J]. 过程工程学报, 2002, 2(4):341-345. Shen Jun, Zhou Bin, Wu Guangming, et al. Preparation and investigation of nanoporous super thermal insulation: silica aerogels[J]. The Chinese Journal of Process Engineering, 2002, 2(4): 341-345. (in Chinese)
[25] 王珏, 沈军, Fricke J. 高效隔热材料掺TiO2及玻璃纤维硅石气凝胶的研制[J]. 材料研究学报, 1995, 9(6):568-572. Wang Jue, Shen Jun, Fricke J. Preparation and investigation of highly effective thermal insulations: silica aerogels doped with TiO2 powder and ceramic fiber[J]. Chinese Journal of Materials Research, 1995, 9(6): 568-572. (in Chinese)
[26] 李龙翔. SiO2气凝胶材料力学与成型性能研究. 银川:宁夏大学物理系, 2010. Li Longxiang. Mechanical and formation properties of SiO2 aerogels. Yinchuan: Department of Physics, Ningxia University, 2010.(in Chinese)
[27] 钟艳红, 周斌, 归佳寅, 等. 超低密度碳气凝胶结构表征及性能研究[J]. 原子能科学技术(待发表). Zhong Yanhong, Zhou Bin, Gui Jiayin, et al. Research into structural characteristic and properties of ultralow-density carbon aerogels[J]. Atomic Energy Science and Technology (in Press). (in Chinese)
[28] Schlitt R, Bodendieck F, Serène F. Thermal performance tests of different insulation materials in a simulated mars environment//Fourth International Symposium Environmental Testing for Space Programmers. Palais de Congrès: European Space Agency, 2001: 121-128.
[29] Novak K S, Phillips C J, Birur G C, et al. Development of a thermal control architecture for the Mars exploration rovers//Space Technology Applications International Forum. Albuquerque: University of New Mexico, 2003: 1-12.
[30] 王闯, 邓宗全, 高海波, 等. 国内外月球着陆器研究状况[J]. 导弹与航天运载技术, 2006(4): 31-36. Wang Chuang, Deng Zongquan, Gao Haibo, et al. Development status of lunar landers[J]. Missile and Space Vehicles, 2006(4): 31-36. (in Chinese)
[31] Domínguez G, Westphal A J, Jones S M, et al. Energy loss and impact catering in aerogels: theory and experiment[J]. Icarus, 2004, 172(2): 613-624.
[32] Iijima T, Adachi I, Amami M, et al. Aerogel Cherenkov counter for the BELLE experiment[J]. Nuclear Instruments Methods Physics Research A, 1996, 379(3): 457-459.
[33] 郭洪波, 宫声凯, 徐惠彬. 梯度热障涂层的设计[J]. 航空学报, 2002, 23(5): 467-472. Guo Hongbo, Gong Shengkai, Xu Huibin. Design of gradient thermal barrier coatings[J]. Acta Aeronautica et Astronautica Sinica, 2002, 23(5): 467-472. (in Chinese)
[34] Gerlach R, Kraus O, Fricke J, et al. Modified SiO2 aerogels as acoustic impedance matching layers in ultrasonic devices[J]. Journal of Non-Crystalline Solids, 1992, 145: 227-232.
[35] Jerri H A, Sheehan W P, Snyder C E, et al. Prolonging density gradient stability[J]. Langmuir, 2010, 26(7): 4725-4731.
[36] Walter K. Meeting the target challenge. LLNL S&TR, July/August 2007: 12-19.
[37] 钟艳红, 周斌, 归佳寅, 等. 密度渐变多层碳气凝胶靶型的制备研究[J]. 强激光与粒子束, 2010, 23(3): 657-660. Zhong Yanhong, Zhou Bin, Gui Jiayin, et al. Research for fabrication of multilayer graded density carbon aerogel target[J]. High Power Laser and Particle Beams, 2010, 23(3): 657-660. (in Chinese)
[38] 钟艳红, 周斌, 归佳寅, 等. 碳气凝胶薄片的制备及其表面密度致密层去除工艺[J]. 强激光与粒子束, 2010, 22(12): 2875-2879. Zhong Yanhong, Zhou Bin, Gui Jiayin, et al. Research for fabrication of carbon aerogel sheet and technics of removing its dense layer[J]. High Power Laser and Particle Beams, 2010, 22(12): 2875-2879. (in Chinese)
[39] 归佳寅, 周斌, 杜艾, 等. 逐层凝胶法制备密度渐变SiO2气凝胶及界面研究[J]. 功能材料, 2010, 42(12): 2113-2116. Gui Jiayin, Zhou Bin, Du Ai, et al. Fabrication of graded density SiO2 aerogel via layer-by-layer gel technique and its interface research[J]. Journal of Functional Materials, 2010, 42(12): 2113-2116. (in Chinese)
[40] Jones S M. A method for producing gradient density aerogel[J]. Journal of Sol-Gel Science and Technology, 2007, 44(3): 255-258.
[41] 归佳寅, 周斌, 钟艳红, 等. 溶胶共凝法制备密度渐变SiO2气凝胶及界面研究[J]. 航空学报, 2011, 32(5): 941-947. Gui Jiayin, Zhou Bin, Zhong Yanhong, et al. Research to fabrication of graded density SiO2 aerogel via sol co-gelation technics[J]. Acta Aeronautica et Astronautica Sinica, 2011, 32(5): 941-947. (in Chinese)
[42] Gui J Y, Zhou B, Zhong Y H, et al. Fabrication of gradient density SiO2 aerogel[J]. Journal of Sol-Gel Science and Technology, 2011, 58(2): 470-475.
[43] Tsou P. Silica aerogel captures cosmic dust intact[J]. Journal of Non-Crystalline Solids, 1995, 186: 415-427.
[44] Tsou P, Brownlee D E, Anderson J D, et al. Stardust encounters comet 81P/Wild 2[J]. Journal of Geophysical Research, 2004, 109(12): E12S01-1-8.
[45] Special issue: Stardust[J]. Science, 2006, 314(5806): 1641-1824.
[46] Wikipedia. Cherenkov radiation. (2010-09-18) http://en.wikipedia.org/wiki/Cherenkov_ radiation.
[47] Arnaboldi C, Bellunato T, Calvi M, et al. Multilayer aerogel for compact RICH detectors[J]. Nuclear Physics B, 2009, 197(1): 57-61.
[48] Johnson W L, Demko J A, Fesmire J E. Analysis and testing of multilayer and aerogel insulation configurations//Transactions of the Cryogenic Engineering Conference: Advances in Cryogenic Engineering. AIP Conference Proceedings, 2010, 1218(1): 780-787.
[49] Hemberger F, Weis S, Gudrun R, et al. Thermal transport properties of functionally graded carbon aerogels[J]. International Journal of Thermophysics, 2009, 30(4): 1357-1371. |