收稿日期:
2022-10-25
修回日期:
2022-11-14
接受日期:
2023-01-14
出版日期:
2023-09-15
发布日期:
2023-02-10
通讯作者:
周璇
E-mail:lomoo@buaa.edu.cn
基金资助:
Feng HE, Ershuai LI, Xuan ZHOU(), Luxi ZHAO
Received:
2022-10-25
Revised:
2022-11-14
Accepted:
2023-01-14
Online:
2023-09-15
Published:
2023-02-10
Contact:
Xuan ZHOU
E-mail:lomoo@buaa.edu.cn
Supported by:
摘要:
时间敏感网络“准时、准确”的调度与传输机制可以有效地提升工业自动化系统、车载综合电子系统中信息交互的确定性,潜在的也成为了机载系统高确定性组网的候选方案之一,但如何将其多种时间敏感整形和调度机制与机载组网环境和需求进行匹配,是当下首要解决的问题。在对现阶段的时间敏感网络的标准进行总结的基础上,详细分析了机载组网的需求,并从时间敏感网络调度与优化、保证时延边界分析两方面总结了当下时间敏感网络相关研究的最新进展,以及与机载组网环境相结合的考虑,进一步针对机载组网的典型需求,从协议剪裁、体系管理、模型工程、可靠安全、无线混传等方面详细讨论了时间敏感网络技术在机载环境应用所面临的挑战和关键技术。
中图分类号:
何锋, 李二帅, 周璇, 赵露茜. 机载时间敏感组网分析综述[J]. 航空学报, 2023, 44(17): 28165-028165.
Feng HE, Ershuai LI, Xuan ZHOU, Luxi ZHAO. A review of airborne time sensitive networking[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(17): 28165-028165.
表 1
典型COTS交换式组网方案技术汇总
技术特征 | FC-AE | 标准以太网 | AFDX | TTE | TSN |
---|---|---|---|---|---|
组网特征 | 面向航空机载组网的标准 | 面向各种组网应用,包括嵌入式和互联网的IEEE网络标准 | 面向航空机载组网的ARINC组网标准 | 面向混合关键实时应用的SAE网络标准 | 面向车载、工业互联网等领域的实时网络协议 |
实际应用 | 美军F35航电系统 | 每个行业,包括航空航天 | A380/350、B787航电系统 | NASA火星探测项目 | 汽车电子控制领域、工厂自动化控制 |
物理介质 | 光缆 | 电缆/光缆 | 电缆/光缆 | 电缆/光缆 | 电缆/光缆 |
通信速率 | 266/512 MHz,1G/2G/4 Gbps | 1G/10 Gbps, 路线图支持100 Gbps | 现行标准为100 Mbps,正在研究1 Gbps | 100 Mbps/1 Gbps, 可支持10 Gbps | 100 Mbps/1 Gbps, 已演示10 Gbps以上带宽 |
组网拓扑 | 点对点/逻辑环/交换式 | 点对点/总线/交换式 | 点对点/交换式 | 点对点/交换式 | 点对点/总线/交换式 |
NoC支持 | 支持基于通道模式的传输 | 可以 | 无 | 轻量式剪裁预期支持 | 潜在支持 |
时钟同步 | 无,上层定义 | 无,上层定义 | 无, 定制VL授时同步 | AS6802同步, 分布式域同步 | 集中式主从同步 |
流控机制 | 信用量控制结合FC-AE上层具体协议 | 无,优先级调度 | 带宽整形 | 时分多路/带宽整形 | CBS/TAS/ATS等 |
通信机制 | 事件触发 | 事件触发 | 事件触发 | 时间触发 | 时间触发/事件触发 |
实时性能 | 依赖于设计 | 无确定性保障 | 实时(依赖于设计) | 强实时 | 实时 (取决于流控机制) |
冗余配置 | 双冗余/混合异构冗余 | 无 | 双冗余网络 | 多冗余网络 | 支持冗余路径 |
供应链 | 开放标准,但终端和交换机供应商有限 | 广泛 | 仅航空相关行业供应商 | 开放标准,但终端和交换机供应商有限 | 潜在多家供应商 |
安全认证 | 无 | 无 | FAA/EASA/CAA认证 | 已开发安全关键用例,EASA认证 | 正在开发用于认证的航空航天协议子集 |
控制管理 | 静态配置,经扩展支持网络管理 | 多种网络管理模型,动态自适应资源管控 | 静态配置,支持SNMP网络管理 | 静态配置,已演示支持SNMP网络管理 | 三种控制模型,支持在线配置,可支持SNMP网络管理 |
表 2
TSN工作组定义的主要协议内容
类别 | 标准名称 | 发布年份 | 简称 |
---|---|---|---|
时钟同步 | Timing and Synchronization for Time-Sensitive Applications | 2020 | IEEE 802.1AS-2020 |
确定性流控 | Forwarding and Queuing Enhancements for Time-Sensitive Streams | 2009 | IEEE 802.1Qav |
Enhancements for Scheduled Traffic | 2015 | IEEE 802.1Qbv | |
Frame Preemption | 2016 | IEEE 802.1Qbu | |
Cyclic Queuing and Forwarding | 2017 | IEEE 802.1Qch | |
Asynchronous Traffic Shaping | 2020 | IEEE 802.1Qcr | |
网络配置与管理 | Stream Reservation Protocol Enhancements and Performance Improvements | 2018 | IEEE 802.1Qcc |
可靠性与安全性 | Frame Replication and Elimination for Reliability | 2017 | IEEE 802.1CB |
Per-Stream Filtering and Policing | 2017 | IEEE 802.1Qci | |
典型场景参考 | TSN Profile for Automotive In-Vehicle Ethernet Communications | 待发布 | IEEE P802.1DG |
IEC/IEEE 60802 TSN Profile for Industrial Automation | 待发布 | IEC/IEEE 60802 |
表 3
基于时间触发通信的TSN调度算法特征对比
流控机制 | 调度算法 | 优化目标 | 求解方式 | 适用规模 |
---|---|---|---|---|
TAS | Craciunas等[ | 占用队列数 | SMT/OMT(增量式) | 100条流量/1 394个数据帧(超过4 h) |
TAS | Durr等[ | 保护带宽 | 禁忌搜索 | 1 500条流量(3.2 h) |
TAS | Farzaneh等[ | 无 | SMT | 100条流量(4 min以内) 更多流量(所需时间指数型增长) |
TAS | Schweissguth[ | 传输延迟 | ILP(联合路由) | 52条流量(22 min以内) |
TAS | Serna Oliver等[ | 接收抖动 | SMT/OMT | 50条流量/211个数据帧(超过40 h) |
TAS | Steiner等[ | 无 | SMT | 50条流量/175个数据帧(10 ms/1个窗口~1 h/5个窗口) |
TAS | Heilmann等[ | 保护带宽 | 考虑优先级的手动求解 | 未形成自动化调度工具 |
TAS | Santos等[ | 无 | SMT | 5条流量/10个发布者+73个订阅者(80 h以内) |
TAS | Jin等[ | GCL调度条目 | SMT、OMT、启发式 | SMT:100条流量(超过48 h) OMT:10 000条流量(小于48 h) 启发式:8 000条流量(两种启发式算法分别在1 min以内或1 h) |
TAS | Falk等[ | 流量冲突图中独立配置顶点数 | ILP(联合路由) | 200条流量(53 min以内) |
TAS | Reusch等[ | 时间窗口的占用率 | 启发式 | 16条流量(20 s以内) |
TAS | Atallah等[ | 分组策略优化组间流量冲突度 | ILP(分组增量式) | 480条流量(40 min) |
TAS | Schweissguth等[ | 路由和调度权衡:流延迟最小、 具有最优差距的延迟最小、 具有最小次要延迟的最短路径 | ILP(联合路由) | 40条流量(21 min以内) |
TAS | Zhang等[ | 占用队列数和带宽利用率 | 适用于优先级约束背包问题的动态规划求解 | 255条流量(可支持) |
TAS | Vlk等[ | 占用队列数和传输延迟 | ILP(增量式) | 1 910条流量(10 min内可调度88.5%) |
TAS | Li等[ | 无 | SMT | 50条流量(33 min以内) |
TAS | Wang等[ | 传输延迟 | 蚁群算法(联合路由) | 100条流量(80 s以内) |
TAS | Tu等[ | 无 | 半监督学习(分组增量式) | 多组流量规模(可调度86.6%) |
TAS | Houtan等[ | 考虑BE流量服务质量:最大化调度时刻、稀疏调度与均匀稀疏调度 | OMT | 10条流量(20 min以内) |
TAS | Vlk等[ | 占用队列数和传输延迟 | CP(联合路由) | 300条流量(1 h以内可调度54.7%) |
TAS | Jia等[ | 传输延迟 | 深度强化学习(增量式) | 1 000条流量(每条流量100 ms以内) |
TAS | Xu等[ | 分组策略优化组间流量冲突度 | 基于学习(分组增量式) | 80条流量(17 min以内) |
TAS | Yuan等[ | 传输延迟 | 启发式 | 30条流量(可支持) |
TAS | Vlk等[ | 无 | 启发式 | 10 812条流量/93 814个数据帧(1 h以内) |
TAS | Zhou等[ | 无 | SMT增量式 | 200条流量(7 min以内) |
TAS+CBS | Pop等[ | 占用队列数 | ILP | 小规模流量求解快;不适应大规模案例 |
TAS+CBS | Raagaard等[ | 占用队列数和传输延迟 | ILP、ASAP、GRASP | ILP:100个数据帧(超过4 h) ASAP、GRASP:1 000个数据帧(1 min以内) |
TAS+CBS | Gavrilut等[ | CDT流量的占用队列数和传输延迟,AVB流量的最坏延迟 | GRASP(联合路由) | 427条CDT流量+464条AVB流量(9 min以内) |
TAS+CBS | Gavrilut等[ | 传输延迟 | 禁忌搜索 | 186条流量(12.5 h) |
CQF | Jiang等[ | 可调度流数量 | 贪心算法 | 140条流量(可支持) |
CQF | Yan等[ | 可调度流数量 | 禁忌搜索 | 2 000条流量(30 min以内) |
CQF | Guo等[ | 可调度流数量 | 启发式 | 500条流量(2 min以内) |
CQF | Liu等[ | 路由策略优化链路带宽利用率 | 强化学习(联合路由) | 7 000条流量(可支持),9 000条流量(可调度40%) |
CQF | Zhang等[ | 传输时隙的负载均衡 | 并行算法(增量式) | 400条流量(3 min以内) |
表 4
TSN不同整形机制性能对比
协议 | 传输特点 | 积压边界 | 延迟边界 | 抖动边界 | 配置复杂度 |
---|---|---|---|---|---|
IEEE 802.1Qbv TAS | 全网时钟同步传输 | 低 | 极低 | 极低 | 高,更适合静态,在适应大规模和动态网络有难度 |
IEEE 802.1Qav CBS | 异步传输 | 较高 | 高,带宽分配对延迟边界影响大 | 高 | 较低,可基于不同流量类别实现带宽预留 |
IEEE 802.1Qcr ATS | 节点时钟异步传输 | 高 | 对高负载量/低优先级的整形效果明显,延迟较低;对低负载量/高优先级流量具有负向的整形效果,延迟高 | 高 | 低,适合于动态 |
IEEE 802.1Qch CQF | 全网时钟同步/异步传输 | 较低 | 端到端延迟基于循环周期的配置,容易计算,独立于拓扑 | 较低 | 较高,适合于动态;广域网应用受限 |
IEEE 802.1Q SP | 异步传输 | 较高 | 较高 | 高 | 较低,适合于动态严格优先级 |
表 5
基于航空航天的TSN裁剪协议
协议 | 目标 | 依据 | 机载组网需求 |
---|---|---|---|
IEEE 802.1AS | 强制 | 基于时间分配和同步以及故障检测隔离和恢复 | 可靠性和安全性 |
IEEE 802.1Qci | 强制 | 第二层数据链路层的策略以及QoS相关的管理 | 可靠性和安全性 |
IEEE 802.1CB | 强制 | 网络和系统的可用性(RASM) | 可靠性和安全性 |
IEEE 802.1 Qbv | 强制 | 针对调度流量 | 确定性和混合关键保障 |
IEEE 802.1Qav | 强制 | 对于有服务质量需求的流量 | 确定性和混合关键保障/带宽和吞吐量 |
IEEE 802.1Qcr | 强制 | 对于有服务质量需求的流量 | 确定性和混合关键保障 |
IEEE 802.1 Qcc | 强制 | 静态配置部分是必要的 | 体系化融合与混合组网 |
IEEE 802.1Qbu & IEEE 802.3br | 待定 | 对于高链路带宽(比如1 Gbps以上)是没有必要的 | 确定性和混合关键保障 |
IEEE 802.1Qch | 待定 | 实际上是其它标准的一个组合 | 确定性和混合关键保障 |
IEEE 802.1 Qat &IEEE 802.1 Qcc | 不需要 | 动态(重新)配置,目前非必要 | 重构与在线配置 |
IEEE 802.1 Qca | 不需要 | 动态(重新)配置,目前非必要 | 重构与在线配置 |
IEEE 802.1 Qcc | 不需要 | 动态(重新)配置,目前非必要 | 重构与在线配置 |
1 | 何锋, 李二帅, 周璇, 等. 机载网络时间触发通信调度设计优化与评价方法[J]. 航空学报, 2021, 42(7): 324258. |
HE F, LI E S, ZHOU X, et al. Design optimization and evaluation method for time-triggered communication scheduling in airborne networks[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(7): 324258 (in Chinese). | |
2 | ASHJAEI M, BELLO L LO, DANESHTALAB M, et al. Time-Sensitive Networking in automotive embedded systems: state of the art and research opportunities[J]. Journal of Systems Architecture, 2021, 117: 102137. |
3 | BELLO L LO, STEINER W. A perspective on IEEE time-sensitive networking for industrial communication and automation systems[J]. Proceedings of the IEEE, 2019, 107(6): 1094-1120. |
4 | IEEE. TSN Profile for Industrial Automation: [S/OL]. [2022-09-20]. . |
5 | IEEE. TSN Profile for Automotive In-Vehicle Ethernet Communications: IEEE P802.1DG [S/OL]. [2022-09-20]. |
6 | STANTON K B. Distributing deterministic, accurate time for tightly coordinated network and software applications: IEEE 802.1 AS, the TSN profile of PTP[J]. IEEE Communications Standards Magazine, 2018, 2(2): 34-40. |
7 | SCHÖNWÄLDER J, BJÖRKLUND M, SHAFER P. Network configuration management using NETCONF and YANG[J]. IEEE Communications Magazine, 2010, 48(9): 166-173. |
8 | ADNAN M. Exact worst-case communication delay analysis of AFDX network[D/OL]. [2022-09-20]. . |
9 | TĂMAŞ-SELICEAN D, POP P, STEINER W. Design optimization of TTEthernet-based distributed real-time systems[J]. Real-Time Systems, 2015, 51(1): 1-35. |
10 | 熊华钢, 周贵荣, 李峭. 机载总线网络及其发展[J]. 航空学报, 2006, 27(6):1135-1144. |
XIONG H G, ZHOU G R, LI Q. A survey on avionics bus and network interconnections and their progress[J]. Acta Aeronautica et Astronautica Sinica, 2006, 27(6): 1135-1144 (in Chinese). | |
11 | ASHJAEI M, PATTI G, BEHNAM M, et al. Schedulability analysis of Ethernet Audio Video Bridging networks with scheduled traffic support[J]. Real-Time Systems, 2017, 53(4): 526-577. |
12 | CAO J Y, ASHJAEI M, CUIJPERS P J L, et al. An independent yet efficient analysis of bandwidth reservation for credit-based shaping[C]∥2018 14th IEEE International Workshop on Factory Communication Systems (WFCS). Piscataway: IEEE Press, 2018: 1-10. |
13 | LI E S, HE F, LI Q, et al. Bandwidth allocation of stream-reservation traffic in TSN[J]. IEEE Transactions on Network and Service Management, 2022, 19(1): 741-755. |
14 | SPECHT J, SAMII S. Synthesis of queue and priority assignment for asynchronous traffic shaping in switched Ethernet[C]∥2017 IEEE Real-Time Systems Symposium (RTSS). Piscataway: IEEE Press, 2018: 178-187. |
15 | PRADOS-GARZON J, TALEB T, BAGAA M. LEARNET: reinforcement learning based flow scheduling for asynchronous deterministic networks[C]∥2020 IEEE International Conference on Communications (ICC). Piscataway: IEEE Press, 2020: 1-6. |
16 | CRACIUNAS S S, OLIVER R S, CHMELÍK M, et al. Scheduling real-time communication in IEEE 802.1Qbv time sensitive networks[C]∥Proceedings of the 24th International Conference on Real-Time Networks and Systems. New York: ACM, 2016: 183-192. |
17 | LI Q, LI D, JIN X, et al. A simple and efficient time-sensitive networking traffic scheduling method for industrial scenarios[J]. Electronics, 2020, 9(12): 2131. |
18 | HOUTAN B, ASHJAEI M, DANESHTALAB M, et al. Synthesising schedules to improve QoS of best-effort traffic in TSN networks[C]∥Proceedings of the 29th International Conference on Real-Time Networks and Systems. New York: ACM, 2021: 68-77. |
19 | JIN X, XIA C Q, GUAN N, et al. Real-time scheduling of massive data in time sensitive networks with a limited number of schedule entries[J]. IEEE Access, 2020, 8: 6751-6767. |
20 | PANG Z Y, HUANG X, LI Z H, et al. Flow scheduling for conflict-free network updates in time-sensitive software-defined networks[J]. IEEE Transactions on Industrial Informatics, 2021, 17(3): 1668-1678. |
21 | VLK M, HANZÁLEK Z, BREJCHOVÁ K, et al. Enhancing schedulability and throughput of time-triggered traffic in IEEE 802.1Qbv time-sensitive networks[J]. IEEE Transactions on Communications, 2020, 68(11): 7023-7038. |
22 | VLK M, HANZÁLEK Z, TANG S Y. Constraint programming approaches to joint routing and scheduling in time-sensitive networks[J]. Computers & Industrial Engineering, 2021, 157: 107317. |
23 | GAVRILUŢ V, POP P. Traffic-type assignment for TSN-based mixed-criticality cyber-physical systems[J]. ACM Transactions on Cyber-Physical Systems, 2020, 4(2): 1-27. |
24 | PAHLEVAN M, OBERMAISSER R. Genetic algorithm for scheduling time-triggered traffic in time-sensitive networks[C]∥2018 IEEE 23rd International Conference on Emerging Technologies and Factory Automation (ETFA). Piscataway: IEEE Press, 2018: 337-344. |
25 | WANG Y, CHEN J D, NING W, et al. A time-sensitive network scheduling algorithm based on improved ant colony optimization[J]. Alexandria Engineering Journal, 2021, 60(1): 107-114. |
26 | JIA H Y, JIANG Y, ZHONG C M, et al. TTDeep: time-triggered scheduling for real-time Ethernet via deep reinforcement learning[C]∥2021 IEEE Global Communications Conference (GLOBECOM). Piscataway: IEEE Press, 2022: 1-6. |
27 | ZHONG C M, JIA H Y, WAN H, et al. DRLS: a deep reinforcement learning based scheduler for time-triggered Ethernet[C]∥2021 International Conference on Computer Communications and Networks (ICCCN). Piscataway: IEEE Press, 2021: 1-11. |
28 | 李浩若, 何锋, 郑重, 等. 基于强化学习的时间触发通信调度方法[J]. 北京航空航天大学学报, 2019, 45(9): 1894-1901. |
LI H R, HE F, ZHENG Z, et al. Time-triggered communication scheduling method based on reinforcement learning[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(9): 1894-1901 (in Chinese). | |
29 | ZHANG Y Z, XU Q M, XU L, et al. Efficient flow scheduling for industrial time-sensitive networking: a divisibility theory-based method[J]. IEEE Transactions on Industrial Informatics, 2022, 18(12): 9312-9323. |
30 | YUAN Y Z, CAO X, LIU Z X, et al. Adaptive priority adjustment scheduling approach with response-time analysis in time-sensitive networks[J]. IEEE Transactions on Industrial Informatics, 2022, 18(12): 8714-8723. |
31 | ATALLAH A A, HAMAD G B, MOHAMED O A. Routing and scheduling of time-triggered traffic in time-sensitive networks[J]. IEEE Transactions on Industrial Informatics, 2020, 16(7): 4525-4534. |
32 | TU J Z, XU Q M, XU L, et al. SSL-SP: a semi-supervised-learning-based stream partitioning method for scale iterated scheduling in time-sensitive networks[C]∥2021 22nd IEEE International Conference on Industrial Technology (ICIT). Piscataway: IEEE Press, 2021: 1182-1187. |
33 | XU L, XU Q M, TU J Z, et al. Learning-based scalable scheduling and routing co-design with stream similarity partitioning for time-sensitive networking[J]. IEEE Internet of Things Journal, 2022, 9(15): 13353-13363. |
34 | FALK J, DÜRR F, ROTHERMEL K. Time-triggered traffic planning for data networks with conflict graphs[C]∥2020 IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS). Piscataway: IEEE Press, 2020: 124-136. |
35 | FALK J, GEPPERT H, DÜRR F, et al. Dynamic QoS-aware traffic planning for time-triggered flows in the real-time data plane[J]. IEEE Transactions on Network and Service Management, 2022, 19(2): 1807-1825. |
36 | FARZANEH M H, KUGELE S, KNOLL A. A graphical modeling tool supporting automated schedule synthesis for time-sensitive networking[C]∥2017 22nd IEEE International Conference on Emerging Technologies and Factory Automation (ETFA). Piscataway: IEEE Press, 2018: 1-8. |
37 | DOS SANTOS A C T, SCHNEIDER B, NIGAM V. TSNSCHED: automated schedule generation for time sensitive networking[C]∥2019 Formal Methods in Computer Aided Design (FMCAD). Piscataway: IEEE Press, 2019: 69-77. |
38 | STEINER W, CRACIUNAS S S, OLIVER R S. Traffic planning for time-sensitive communication[J]. IEEE Communications Standards Magazine, 2018, 2(2): 42-47. |
39 | SERNA OLIVER R, CRACIUNAS S S, STEINER W. IEEE 802.1Qbv gate control list synthesis using array theory encoding[C]∥2018 IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS). Piscataway: IEEE Press, 2018: 13-24. |
40 | REUSCH N, ZHAO L X, CRACIUNAS S S, et al. Window-based schedule synthesis for industrial IEEE 802.1Qbv TSN networks[C]∥2020 16th IEEE International Conference on Factory Communication Systems (WFCS). Piscataway: IEEE Press, 2020: 1-4. |
41 | VLK M, BREJCHOVÁ K, HANZÁLEK Z, et al. Large-scale periodic scheduling in time-sensitive networks[J]. Computers & Operations Research, 2022, 137: 105512. |
42 | DÜRR F, NAYAK N G. No-wait packet scheduling for IEEE time-sensitive networks (TSN)[C]∥Proceedings of the 24th International Conference on Real-Time Networks and Systems. New York: ACM, 2016: 203-212. |
43 | HEILMANN F, FOHLER G. Size-based queuing: an approach to improve bandwidth utilization in TSN networks[J]. ACM SIGBED Review, 2019, 16(1): 9-14. |
44 | ZHANG C W, WANG Y, YAO R Y, et al. Packet-size aware scheduling algorithms in guard band for time sensitive networking[J]. CCF Transactions on Networking, 2020, 3(1): 4-20. |
45 | POP P, RAAGAARD M L, CRACIUNAS S S, et al. Design optimisation of cyber-physical distributed systems using IEEE time-sensitive networks[J]. IET Cyber-Physical Systems: Theory & Applications, 2016, 1(1): 86-94. |
46 | RAAGAARD M L, POP P. Optimization algorithms for the scheduling of IEEE 802.1 time-sensitive networking (TSN): DTU Technical Report[R]. Kongens Lyngby: Technical University of Denmark, 2017. |
47 | SCHWEISSGUTH E, DANIELIS P, TIMMERMANN D, et al. ILP-based joint routing and scheduling for time-triggered networks[C]∥Proceedings of the 25th International Conference on Real-Time Networks and Systems. New York: ACM, 2017: 8-17. |
48 | SCHWEISSGUTH E, TIMMERMANN D, PARZYJEGLA H, et al. ILP-based routing and scheduling of multicast realtime traffic in time-sensitive networks[C]∥2020 IEEE 26th International Conference on Embedded and Real-Time Computing Systems and Applications (RTCSA). Piscataway: IEEE Press, 2020: 1-11. |
49 | GAVRILUŢ V, ZHAO L X, RAAGAARD M L, et al. AVB-aware routing and scheduling of time-triggered traffic for TSN[J]. IEEE Access, 2018, 6: 75229-75243. |
50 | ZHOU Y B, SAMII S, ELES P, et al. Time-triggered scheduling for time-sensitive networking with preemption[C]∥2022 27th Asia and South Pacific Design Automation Conference (ASP-DAC). Piscataway: IEEE Press, 2022: 262-267. |
51 | 姜旭艳, 严锦立, 全巍, 等. SSA:一种面向CQF模型的TSN资源调度算法[J]. 东北大学学报(自然科学版), 2020, 41(6): 784-791. |
JIANG X Y, YAN J L, QUAN W, et al. SSA: CQF-oriented scheduling algorithm in time-sensitive networking[J]. Journal of Northeastern University (Natural Science), 2020, 41(6): 784-791 (in Chinese). | |
52 | YAN J L, QUAN W, JIANG X Y, et al. Injection time planning: making CQF practical in time-sensitive networking[C]∥IEEE INFOCOM 2020-IEEE Conference on Computer Communications. Piscataway: IEEE Press, 2020: 616-625. |
53 | GUO M, GU C J, HE S B, et al. MSS: exploiting mapping score for CQF start time planning in time-sensitive networking[J]. IEEE Transactions on Industrial Informatics, 2023, 19(2): 2140-2150. |
54 | LIU Y, CHENG Z R, REN J, et al. Joint routing and scheduling for CQF[C]∥2022 7th International Conference on Computer and Communication Systems (ICCCS). Piscataway: IEEE Press, 2022: 1-5. |
55 | ADNAN M, SCHARBARG J L, ERMONT J, et al. An improved timed automata approach for computing exact worst-case delays of AFDX sporadic flows[C]∥Proceedings of 2012 IEEE 17th International Conference on Emerging Technologies & Factory Automation (ETFA 2012). Piscataway: IEEE Press, 2013: 1-8. |
56 | LI X T, GEORGE L. Deterministic delay analysis of AVB switched Ethernet networks using an extended Trajectory Approach[J]. Real-Time Systems, 2017, 53(1): 121-186. |
57 | LE BOUDEC J Y, THIRAN P. Network calculus: a theory of deterministic queuing systems for the Internet[M]. Berlin: Springer, 2001. |
58 | BOUILLARD A, BOYER M, LE CORRONC E. Deterministic Network Calculus: From Theory to Practical Implementation[M]. Hoboken: John Wiley & Sons, Inc., 2018. |
59 | ZHAO L X, POP P, STEINHORST S. Quantitative performance comparison of various traffic shapers in time-sensitive networking[J]. IEEE Transactions on Network and Service Management, 2022, 19(3): 2899-2928. |
60 | ZHAO L X, POP P, CRACIUNAS S S. Worst-case latency analysis for IEEE 802.1Qbv time sensitive networks using network calculus[J]. IEEE Access, 2018, 6: 41803-41815. |
61 | HELLMANNS D, FALK J, GLAVACKIJ A, et al. On the performance of stream-based, class-based time-aware shaping and frame preemption in TSN[C]∥2020 IEEE International Conference on Industrial Technology (ICIT). Piscataway: IEEE Press, 2020: 298-303. |
62 | ZHAO L X, POP P, GONG Z J, et al. Improving latency analysis for flexible window-based GCL scheduling in TSN networks by integration of consecutive nodes offsets[J]. IEEE Internet of Things Journal, 2021, 8(7): 5574-5584. |
63 | SHALGHUM K M, NOORDIN N K, SALI A, et al. Critical offset optimizations for overlapping-based time-triggered windows in time-sensitive network[J]. IEEE Access, 2021, 9: 130484-130501. |
64 | BARZEGARAN M, REUSCH N, ZHAO L X, et al. Real-time traffic guarantees in heterogeneous time-sensitive networks[C]∥Proceedings of the 30th International Conference on Real-Time Networks and Systems. New York: ACM, 2022: 46-57. |
65 | CHOI B D, CHOI K B. A Markov modulated fluid queueing system with strict priority[J]. Telecommunication Systems, 1998, 9(1): 79-95. |
66 | SCHMITT J, HURLEY P, HOLLICK M, et al. Per-flow guarantees under class-based priority queueing[C]∥GLOBECOM '03. IEEE Global Telecommunications Conference (IEEE Cat. No.03CH37489). Piscataway: IEEE Press, 2004: 4169-4174. |
67 | GUAN N, GU Z H, DENG Q X, et al. Exact schedulability analysis for static-priority global multiprocessor scheduling using model-checking[C]∥IFIP International Workshop on Software Technolgies for Embedded and Ubiquitous Systems. Heidelberg: Springer, 2007: 263-272. |
68 | PARK J D, CHEOUN B M, JEON J W. Worst-case analysis of Ethernet AVB in automotive system[C]∥2015 IEEE International Conference on Information and Automation. Piscataway: IEEE Press, 2015: 1696-1699. |
69 | BORDOLOI U D, AMINIFAR A, ELES P, et al. Schedulability analysis of Ethernet AVB switches[C]∥2014 IEEE 20th International Conference on Embedded and Real-Time Computing Systems and Applications. Piscataway: IEEE Press, 2014: 1-10. |
70 | CAO J Y, CUIJPERS P J L, BRIL R J, et al. Independent WCRT analysis for individual priority classes in Ethernet AVB[J]. Real-Time Systems, 2018, 54(4): 861-911. |
71 | QUECK R. Analysis of Ethernet AVB for automotive networks using Network Calculus[C]∥2012 IEEE International Conference on Vehicular Electronics and Safety (ICVES 2012). Piscataway: IEEE Press, 2012: 61-67. |
72 | DE AZUA J A R, BOYER M. Complete modelling of AVB in network calculus framework[C]∥Proceedings of the 22nd International Conference on Real-Time Networks and Systems. New York: ACM, 2014: 55-64. |
73 | DIEMER J, THIELE D, ERNST R. Formal worst-case timing analysis of Ethernet topologies with strict-priority and AVB switching[C]∥7th IEEE International Symposium on Industrial Embedded Systems (SIES'12). Piscataway: IEEE Press, 2012: 1-10. |
74 | BENAMMAR N, BAUER H, RIDOUARD F, et al. Timing analysis of AVB Ethernet network using the Forward end-to-end Delay Analysis[C]∥Proceedings of the 26th International Conference on Real-Time Networks and Systems. New York: ACM, 2018: 223-233. |
75 | ZHAO L, HE F, LI E S, et al. Improving worst-case delay analysis for traffic of additional stream reservation class in ethernet-AVB network[J]. Sensors, 2018, 18(11): 3849. |
76 | SPECHT J, SAMII S. Urgency-based scheduler for time-sensitive switched Ethernet networks[C]∥2016 28th Euromicro Conference on Real-Time Systems (ECRTS). Piscataway: IEEE Press, 2016: 75-85. |
77 | LE BOUDEC J Y. A theory of traffic regulators for deterministic networks with application to interleaved regulators[J]. IEEE/ACM Transactions on Networking, 2018, 26(6): 2721-2733. |
78 | ZHOU Z F, LEE J, BERGER M S, et al. Simulating TSN traffic scheduling and shaping for future automotive Ethernet[J]. Journal of Communications and Networks, 2021, 23(1): 53-62. |
79 | IEEE. Multiple Cyclic Queuing and Forwarding [S/OL]. [2022-09-20]. . |
80 | THIELE D, ERNST R. Formal worst-case performance analysis of time-sensitive Ethernet with frame preemption[C]∥2016 IEEE 21st International Conference on Emerging Technologies and Factory Automation (ETFA). Piscataway: IEEE Press, 2016: 1-9. |
81 | ZHAO L X, POP P, ZHENG Z, et al. Timing analysis of AVB traffic in TSN networks using network calculus[C]∥2018 IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS). Piscataway: IEEE Press, 2018: 25-36. |
82 | BERISA A, ZHAO L X, CRACIUNAS S S, et al. AVB-aware routing and scheduling for critical traffic in time-sensitive networks with preemption[C]∥Proceedings of the 30th International Conference on Real-Time Networks and Systems. New York: ACM, 2022: 207-218. |
83 | BELLO L LO, ASHJAEI M, PATTI G, et al. Schedulability analysis of Time-Sensitive Networks with scheduled traffic and preemption support[J]. Journal of Parallel and Distributed Computing, 2020, 144: 153-171. |
84 | BELLO L L. Novel trends in automotive networks: a perspective on Ethernet and the IEEE Audio Video Bridging[C]∥Proceedings of the 2014 IEEE Emerging Technology and Factory Automation (ETFA). Piscataway: IEEE Press, 2015: 1-8. |
85 | MOHAMMADPOUR E, STAI E, MOHIUDDIN M, et al. Latency and backlog bounds in time-sensitive networking with credit based shapers and asynchronous traffic shaping[C]∥2018 30th International Teletraffic Congress (ITC 30). Piscataway: IEEE Press, 2018: 1-6. |
86 | ZHAO L X, POP P, ZHENG Z, et al. Latency analysis of multiple classes of AVB traffic in TSN with standard credit behavior using network calculus[J]. IEEE Transactions on Industrial Electronics, 2021, 68(10): 10291-10302. |
87 | FANG B W, LI Q, GONG Z J, et al. Simulative assessments of credit-based shaping and asynchronous traffic shaping in time-sensitive networking[C]∥2020 12th International Conference on Advanced Infocomm Technology (ICAIT). Piscataway: IEEE Press, 2021: 111-118. |
88 | IEEE. TSN for Aerospace Onboard Ethernet Communications: IEEE P802.1DP [S/OL]. [2022-09-20]. . |
89 | HACKEL T, MEYER P, KORF F, et al. Software-defined networks supporting time-sensitive In-vehicular communication[C]∥2019 IEEE 89th Vehicular Technology Conference (VTC2019-Spring). Piscataway: IEEE Press, 2019: 1-5. |
90 | 汪硕, 尹淑文, 卢华, 等 面向时间敏感网络的控制管理机制研究综述 [J]. 网络与信息安全学报, 2021, 7(6): 11-20. |
WANG S, YIN S W, LU H, et al. Survey of control and management mechanisms for time-sensitive network[J]. Chinese Journal of Network and Information Security, 2021, 7(6): 11-20 (in Chinese). | |
91 | BÖHM M, OHMS J, WERMSER D. Multi-domain time-sensitive networks-an east-westbound protocol for dynamic TSN-stream configuration across domains[C]∥2019 24th IEEE International Conference on Emerging Technologies and Factory Automation (ETFA). Piscataway: IEEE Press, 2019: 1363-1366. |
92 | PAHLEVAN M, TABASSAM N, OBERMAISSER R. Heuristic list scheduler for time triggered traffic in time sensitive networks[J]. ACM SIGBED Review, 2019, 16(1): 15-20. |
93 | MAHFOUZI R, AMINIFAR A, SAMII S, et al. Security-aware routing and scheduling for control applications on Ethernet TSN networks[J]. ACM Transactions on Design Automation of Electronic Systems, 2019, 25(1): 1-26. |
94 | LI H X, LI D K, ZHANG X D, et al. A security management architecture for time synchronization towards high precision networks[J]. IEEE Access, 2021, 9: 117542-117553. |
95 | ERGENÇ D, BRÜLHART C, NEUMANN J, et al. On the security of IEEE 802.1 time-sensitive networking[C]∥2021 IEEE International Conference on Communications Workshops (ICC Workshops). Piscataway: IEEE Press, 2021: 1-6. |
[1] | 赵长啸, 戴骏, 董方正, 李道俊. 机载时间敏感网络链路安全关键度均衡调度方法[J]. 航空学报, 2024, 45(6): 328870-328870. |
[2] | 罗庆, 张涛, 单鹏, 张文涛, 刘子豪. 基于改进Q学习的IMA系统重构蓝图生成方法[J]. 航空学报, 2021, 42(8): 525792-525792. |
[3] | 何锋, 李二帅, 周璇, 李浩若, 龚子杰. 机载网络时间触发通信调度设计优化与评价方法[J]. 航空学报, 2021, 42(7): 324258-324258. |
[4] | 吕娜, 潘武, 陈柯帆, 张彦晖. 控制器故障下的软件定义机载网络数据平面迁移策略[J]. 航空学报, 2021, 42(3): 324228-324228. |
[5] | 吕娜, 陈坤, 陈柯帆, 朱海峰, 潘武. 适应拓扑变化的拥塞最小化网络更新策略[J]. 航空学报, 2020, 41(7): 323661-323661. |
[6] | 吕娜, 刘创, 陈柯帆, 曹芳波. 一种面向航空集群的集中控制式网络部署方法[J]. 航空学报, 2018, 39(7): 321961-321961. |
[7] | 赵长啸, 何锋, 阎芳, 王鹏, 熊华钢. 面向风险均衡的AFDX虚拟链路路径寻优算法[J]. 航空学报, 2018, 39(1): 321435-321435. |
[8] | 屈也频. 作战支援类飞机航空电子任务系统总体结构研究[J]. 航空学报, 2014, 35(8): 2307-2318. |
[9] | 魏嘉利, 贾云峰, 谢树果, 吴藻菡. 航空电子系统电磁环境复杂度量化评估方法[J]. 航空学报, 2014, 35(2): 487-496. |
[10] | 张军. 空域监视技术的新进展及应用[J]. 航空学报, 2011, 32(1): 1-14. |
[11] | 沈玉龙;崔西宁;马建峰;牛文生;. 综合化航空电子系统可信软件技术[J]. 航空学报, 2009, 30(5): 938-945. |
[12] | 刘兴春;邵搏;李铮. 基于最短路径的SCI网络拓扑结构研究[J]. 航空学报, 2007, 28(5): 1130-1136. |
[13] | 徐亚军;张晓林;熊华钢. 航空电子系统FC交换式网络的可靠性研究[J]. 航空学报, 2007, 28(2): 402-406. |
[14] | 朱怡安;康继昌;韩兆轩. 分布式航空电子软件测试系统[J]. 航空学报, 1992, 13(8): 382-386. |
[15] | 孙仲康. 图像匹配技术在航空电子系统中的应用[J]. 航空学报, 1984, 5(2): 118-131. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
版权所有 © 航空学报编辑部
版权所有 © 2011航空学报杂志社
主管单位:中国科学技术协会 主办单位:中国航空学会 北京航空航天大学