1 |
HANN R. UAV icing: Comparison of LEWICE and FENSAP-ICE for ice accretion and performance degradation[C]∥ 2018 Atmospheric and Space Environments Conference. Reston: AIAA, 2018.
|
2 |
李琳佩. 基于无人机的高能效通信策略研究[D]. 北京: 北京邮电大学, 2021.
|
|
LI L P. Research on energy efficient communication strategies based on unmanned aerial vehicles[D]. Beijing: Beijing University of Posts and Telecommunications, 2021 (in Chinese).
|
3 |
CAO Y H, TAN W Y, WU Z L. Aircraft icing: An ongoing threat to aviation safety[J]. Aerospace Science and Technology, 2018, 75: 353-385.
|
4 |
WU Q, XU H J, PEI B B, et al. Conceptual design and preliminary experiment of icing risk management and protection system[J]. Chinese Journal of Aeronautics, 2022, 35(6): 101-115.
|
5 |
LI H R, ZHANG Y F, CHEN H X. Optimization design of airfoils under atmospheric icing conditions for UAV[J]. Chinese Journal of Aeronautics, 2022, 35(4): 118-133.
|
6 |
Federal Aviation Administration. Federal aviation regulations Part 25: Airworthiness standards transport category airplanes [S]. Washington, D.C.: Federal Aviation Administration, 2022.
|
7 |
刘旭光. 数值预报产品在航空气象预报中的应用[J]. 四川气象, 2001, 21(4): 18-22.
|
|
LIU X G. Application of numerical forecast products in aviation weather forecast[J]. Journal of Sichuan Meteorology, 2001, 21(4): 18-22 (in Chinese).
|
8 |
POLITOVICH M, SAND W. A proposed icing severity index based upon meteorology[C]∥International Conference on Aviation Weather Systems, 1991: 157-162.
|
9 |
THOMPSON G, BRUINTJES R T, BROWN B G, et al. Intercomparison of in-flight icing algorithms. Part I: WISP94 real-time icing prediction and evaluation program[J]. Weather and Forecasting, 1997, 12(4): 878-889.
|
10 |
FORBES G S, HU Y, BROWN B G, et al. Examination of conditions in the proximity of pilot reports of aircraft icing during STORM-FEST[C]∥International Conference on Aviation Weather Systems, 1993: 282-286.
|
11 |
MCDONOUGH F, BERNSTEIN B, POLITOVICH M, et al. The forecast icing potential algorithm[C]∥ 42nd AIAA Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2004.
|
12 |
BERNSTEIN B C, MCDONOUGH F, POLITOVICH M K, et al. Current icing potential: Algorithm description and comparison with aircraft observations[J]. Journal of Applied Meteorology, 2005, 44(7): 969-986.
|
13 |
BERNSTEIN B C, WOLFF C A, MCDONOUGH F. An inferred climatology of icing conditions aloft, including supercooled large drops. Part I: Canada and the continental United States[J]. Journal of Applied Meteorology and Climatology, 2007, 46(11): 1857-1878.
|
14 |
王洪芳, 刘健文, 纪飞, 等. 飞机积冰业务预报技术研究[J]. 气象科技, 2003, 31(3): 140-146.
|
|
WANG H F, LIU J W, JI F, et al. Operational forecast technique of aircraft icing[J]. Meteorological Science and Technology, 2003, 31(3): 140-146 (in Chinese).
|
15 |
李佰平, 戴建华, 孙敏, 等. 一种改进的飞机自然结冰潜势算法研究[J]. 气象, 2018, 44(11): 1377-1390.
|
|
LI B P, DAI J H, SUN M, et al. An improved aircraft natural icing potential algorithm[J]. Meteorological Monthly, 2018, 44(11): 1377-1390 (in Chinese).
|
16 |
王义凡. 考虑历史和未来气候变化的台风风场多尺度模拟[D]. 杭州: 浙江大学, 2020.
|
|
WANG Y F. Multi-scale simulation of typhoon wind field considering historical and future climate changes[D]. Hangzhou: Zhejiang University, 2020 (in Chinese).
|
17 |
FERNÁNDEZ-GONZÁLEZ S, SÁNCHEZ J L, GASCÓN E, et al. Weather features associated with aircraft icing conditions: A case study[J]. The Scientific World Journal, 2014, 2014: 279063.
|
18 |
MERINO A, GARCÍA-ORTEGA E, FERNÁNDEZ-GONZÁLEZ S, et al. Aircraft icing: In-cloud measurements and sensitivity to physical parameterizations[J]. Geophysical Research Letters, 2019, 46(20): 11559-11567.
|
19 |
STITH J L, DYE J E, BANSEMER A, et al. Microphysical observations of tropical clouds[J]. Journal of Applied Meteorology, 2002, 41(2): 97-117.
|
20 |
LAWSON P, GURGANUS C, WOODS S, et al. Aircraft observations of cumulus microphysics ranging from the tropics to midlatitudes: Implications for a “new” secondary ice process[J]. Journal of the Atmospheric Sciences, 2017, 74(9): 2899-2920.
|
21 |
柯元惠, 马明明, 郑艳, 等. 海南岛雷暴大风天气形势和环境参数特征分析[J]. 暴雨灾害, 2022, 41(1): 86-93.
|
|
KE Y H, MA M M, ZHENG Y, et al. Analysis of synoptic situation and environmental parameters of thunderstorm gales in Hainan[J]. Torrential Rain and Disasters, 2022, 41(1): 86-93 (in Chinese).
|
22 |
HONG S Y, NOH Y, DUDHIA J. A new vertical diffusion package with an explicit treatment of entrainment processes[J]. Monthly Weather Review, 2006, 134(9): 2318-2341.
|
23 |
KAIN J S. The Kain-Fritsch convective parameterization: An update[J]. Journal of Applied Meteorology, 2004, 43(1): 170-181.
|
24 |
MLAWER E J, TAUBMAN S J, BROWN P D, et al. Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave[J]. Journal of Geophysical Research: Atmospheres, 1997, 102(D14): 16663-16682.
|
25 |
DUDHIA J. Numerical study of convection observed during the winter monsoon experiment using a mesoscale two-dimensional model[J]. Journal of the Atmospheric Sciences, 1989, 46(20): 3077-3107.
|
26 |
FAIRALL C W, BRADLEY E F, HARE J E, et al. Bulk parameterization of air-sea fluxes: Updates and verification for the COARE algorithm[J]. Journal of Climate, 2003, 16(4): 571-591.
|
27 |
CHEN F, DUDHIA J. Coupling an advanced land surface-hydrology model with the Penn State-NCAR MM5 modeling system. Part I: Model implementation and sensitivity[J]. Monthly Weather Review, 2001, 129(4): 569-585.
|
28 |
HONG S Y, LIM J O J. The WRF single-moment 6-class microphysics scheme (WSM6) [J]. Journal of the Korean Meteorological Society, 2006, 42: 129–151.
|
29 |
CHEN S H, SUN W Y. A one-dimensional time dependent cloud model[J]. Journal of the Meteorological Society of Japan Ser II, 2002, 80(1): 99-118.
|
30 |
THOMPSON G, FIELD P R, RASMUSSEN R M, et al. Explicit forecasts of winter precipitation using an improved bulk microphysics scheme. Part II: Implementation of a new snow parameterization[J]. Monthly Weather Review, 2008, 136(12): 5095-5115.
|
31 |
MORRISON H, THOMPSON G, TATARSKII V. Impact of cloud microphysics on the development of trailing stratiform precipitation in a simulated squall line: Comparison of one- and two-moment schemes[J]. Monthly Weather Review, 2009, 137(3): 991-1007.
|
32 |
刘藤, 李栋, 黄冉冉, 等. 基于降阶模型的翼型结冰冰形预测方法[J]. 北京航空航天大学学报, 2019, 45(5): 1033-1041.
|
|
LIU T, LI D, HUANG R R, et al. Ice shape prediction method of aero-icing based on reduced order model[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(5): 1033-1041 (in Chinese).
|
33 |
SIROVICH L. Turbulence and the dynamics of coherent structures. Ⅰ-Coherent structures[J]. Quarterly of Applied Mathematics, 1987, 45(3): 561-571.
|
34 |
SIROVICH L. Turbulence and the dynamics of coherent structures. Ⅱ-Symmetries and transformations[J]. Quarterly of Applied Mathematics, 1987, 45(3): 573-582.
|
35 |
SIROVICH L. Turbulence and the dynamics of coherent structures. Ⅲ-Dynamics and scaling[J]. Quarterly of Applied Mathematics, 1987, 45(3): 583-590.
|
36 |
邱亚松, 白俊强, 华俊. 基于本征正交分解和代理模型的流场预测方法[J]. 航空学报, 2013, 34(6): 1249-1260.
|
|
QIU Y S, BAI J Q, HUA J. Flow field estimation method based on proper orthogonal decomposition and surrogate model[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(6): 1249-1260 (in Chinese).
|
37 |
唐必伟. 粒子群算法的改进及其在无人机任务规划中的应用[D]. 西安: 西北工业大学, 2017.
|
|
TANG B W. An improved particle swarm optimization method and its application on mission planning of unmanned aerial vehicle[D]. Xi’an: Northwestern Polytechnical University, 2017 (in Chinese).
|
38 |
KENNEDY J, EBERHART R. Particle swarm optimization[C]∥Proceedings of ICNN'95-International Conference on Neural Networks. Piscataway: IEEE Press, 1995: 1942-1948.
|
39 |
ZHANG Y, GONG D W, ZHANG J H. Robot path planning in uncertain environment using multi-objective particle swarm optimization[J]. Neurocomputing, 2013, 103: 172-185.
|
40 |
TANG B W, XIANG K, PANG M Y, et al. Multi-robot path planning using an improved self-adaptive particle swarm optimization[J]. International Journal of Advanced Robotic Systems, 2020, 17(5): 172988142093615.
|
41 |
JONES S L. Simulation of meteorological fields for icing applications at the summit of mount Washington[D]. Lincoln: University of Nebraska-Lincoln, 2014.
|