航空学报 > 2022, Vol. 43 Issue (3): 626619-626619   doi: 10.7527/S1000-6893.2021.26619

火星探测器大气数据测量方法

陈广强1, 豆国辉1, 魏昊功2, 邹昕2, 李齐2, 刘周1, 周伟江1   

  1. 1. 中国航天空气动力技术研究院, 北京 100074;
    2. 北京空间飞行器总体设计部, 北京 100094
  • 收稿日期:2021-11-04 修回日期:2021-11-26 出版日期:2022-03-15 发布日期:2021-12-24
  • 通讯作者: 豆国辉 E-mail:dgh113@126.com
  • 基金资助:
    国家数值风洞工程

Air data sensing technology of Mars probe

CHEN Guangqiang1, DOU Guohui1, WEI Haogong2, ZOU Xin2, LI Qi2, LIU Zhou1, ZHOU Weijiang1   

  1. 1. China Academy of Aerospace Aerodynamics, Beijing 100074, China;
    2. Beijing Institute of Spacecraft System Engineering, Beijing 100094, China
  • Received:2021-11-04 Revised:2021-11-26 Online:2022-03-15 Published:2021-12-24
  • Supported by:
    National Numerical Wind Tunnel Project

摘要: 针对火星探测器进入飞行弹道的高马赫数、化学非平衡效应和低动压等特点,提出了一种基于火星进入大气数据系统/惯性测量单元(MEADS/IMU)耦合的测量方法,实现海拔60 km以下区域的火星大气数据测量。利用自主研发CACFD软件平台的化学非平衡模型/完全气体模型计算获得探测器宽速域飞行流场的表面压力点数据,建立了基于BP神经网络的MEADS算法模型。在高马赫数段(Ma>12)利用IMU测量获得的马赫数作为输入条件,结合MEADS算法测量获得总压、动压、静压、攻角和侧滑角等飞行大气参数,成功克服了马赫数无关性对MEADS系统测量的影响。在低马赫数段(Ma≤12),直接应用MEADS算法测量静压、马赫数、攻角和侧滑角。测试结果表明在MEADS系统测压单元误差≤7 Pa的条件:总压测量误差≤14 Pa(1.5%),攻角测量误差≤0.9°,侧滑角测量误差≤0.9°,动压测量误差≤10 Pa(1.5%),静压测量误差≤7 Pa(3%),马赫数测量误差≤0.1。飞行试验数据得出:MEADS测量与IMU测量马赫数、攻角和侧滑角等结果基本一致。

关键词: 火星探测器, 大气数据测量, 飞行试验, 化学非平衡效应, 计算流体力学

Abstract: According to characteristics such as high Mach number, chemical non-equilibrium effect, and low dynamic pressure of the Mars probe entering the flight trajectory, a data measurement method upon entering atmosphere based on MEADS/IMU coupling is proposed to measure Mars atmosphere data in the area below 60 km altitude.Using the chemical non-equilibrium model/complete gas model of the independently developed CACFD software platform, we calculate the surface pressure point data of the wide velocity domain flight flow field of the probe, and creatively establish the MEADS algorithm model based on the BP neural network.In the high Mach section (Ma>12), the Mach number measured by IMU is used as the input condition, and the flight atmospheric parameters such as the total pressure, dynamic pressure, static pressure, angle of attack and sideslip angle are measured in combination with the MEADS algorithm, successfully overcoming the influence of Mach number independence on MEADS system measurement.In the low Mach number section (Ma ≤ 12), the MEADS algorithm is directly applied to measure the static pressure, Mach number, angle of attack and sideslip angle.The test results show that the conditions for the error of the pressure measuring unit in the MEADS system to be ≤ 7 Pa:the total pressure measurement error to be ≤ 14 Pa (1.5%), the angle of attack measurement error ≤ 0.9°, the side slip angle measurement error ≤ 0.9°, the dynamic pressure measurement error ≤ 10 Pa (1.5%), the static pressure measurement error ≤ 7 Pa (3%), and the Mach number measurement error ≤ 0.1.The flight test data show basic consistency of the MEADS measurement results with the Mach number, angle of attack and sideslip angle measured by IMU.

Key words: Mars probe, air data sensing, flight test, chemical non-equilibrium effect, computational fluid dynamics

中图分类号: