[1] BUSHNELL D M. Scaling:Wind tunnel to flight[J]. Annual Review of Fluid Mechanics, 2006, 38:111-128. [2] PRAHARAJ S, ROGER R, CHAN S, et al. CFD computations to scale jet interaction effects from tunnel to flight[C]//35th Aerospace Sciences Meeting and Exhibit. Reston:AIAA, 1997. [3] WILLIAMS J. Technical evaluation report on the flight mechanics panel symposium on ground/flight test techniques and correlation[R]. 1983. [4] KATZ J, WALTERS R. Investigation of wind-tunnel wall effects in high blockage testing[C]//33rd Aerospace Sciences Meeting and Exhibit. Reston:AIAA, 1995. [5] MCKINNEY L, BAALS D. Wind-tunnel/flight correlation, 1981:108239628[R]. 1982. [6] HAN Z H, CHEN J, ZHANG K S, et al. Aerodynamic shape optimization of natural-laminar-flow wing using surrogate-based approach[J]. AIAA Journal, 2018, 56(7):2579-2593. [7] 恽起麟. 风洞实验数据的误差与修正[M]. 北京:国防工业出版社, 1996. YUN Q L. rror and correction of wind tunnel test data[M]. Beijing:National Defense Industry Press, 1996(in Chinese). [8] ELSENAAR A. Observed Reynolds number effects on airfoils and high aspect ratio wings at transonic flow conditions[R]. 1988. [9] PETTERSSON K, RIZZI A. Aerodynamic scaling to free flight conditions:Past and present[J]. Progress in Aerospace Sciences, 2008, 44(4):295-313. [10] GHANADI F, DJENIDI L. Reynolds number effect on the response of a rough wall turbulent boundary layer to local wall suction[J]. Journal of Fluid Mechanics, 2021, 916:A25. [11] SODERMAN P T, AIKEN T N. Full-scale wind-tunnel tests of a small unpowered jet aircraft with a T-tail:NASA TN D-6573[R]. Washington,D.C.:NASA, 1971. [12] KELLER D. High-lift design for a forward swept natural laminar flow wing[J]. CEAS Aeronautical Journal, 2020, 11(1):81-92. [13] KIM J, LEE Y. A study on effective correction of internal drag and wall interference using response surface in wind tunnel test[J]. Journal of the Korea Institute of Military Science and Technology, 2019, 22(5):637-643. [14] KIMZEY W F, COVERT E E, ROONEY E C,et al. Thrust and drag:Its prediction and verification[M]. Reston:AIAA, 1985. [15] KIMZEY W F, COVERT E E, ROONEY E C. Thrust and drag:Its prediction and verification[M]. Reston:AIAA, 1985:281-330. [16] CARLSON J. Prediction of very high Reynolds nubmer compressible skin friction[C]//20th AIAA Advanced Measurement and Ground Testing Technology Conference. Reston:AIAA, 1998. [17] SOMMER S C, SHORT B. Free-flight measurements of turbulent-boundary-layer skin friction in the presence of severe aerodynamic heating at Mach numbers from 2.8 to 7.0:NACA TN3391[R]. Washington, D.C.:NACA, 1955. [18] RAYMER D P. Aircraft design:A conceptual approach[M]. Reston:AIAA, 1992. [19] BARLOW J B, RAE W H, POPE A. Low-speed wind tunnel testing[M]. New York:Wiley, 1999. [20] JACOBS E, SHERMAN A. Airfoil section characteristics as affected by variations of the Reynolds number:586[R]. Springfield:National Technical Information Service, 1939. [21] SELIG M, DETERS R, WILIAMSON G. Wind tunnel testing airfoils at low Reynolds numbers[C]//49th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. Reston:AIAA, 2011. [22] REICHENBACH S, MCMASTERS J. A semiempirical interpolation technique for predicting full-scale flight characteristics[C]//25th AIAA Aerospace Sciences Meeting. Reston:AIAA, 1987. [23] NICOLÍ A, IMPERATORE B, MARINI M, et al. Ground-to-flight extrapolation of the aerodynamic coefficients of the VEGA launcher[C]//25th AIAA Aerodynamic Measurement Technology and Ground Testing Conference. Reston:AIAA, 2006. [24] PETTERSSON K, RIZZI A. Reynolds number effects identified with CFD methods compared to semi-empirical methods[C]//25th Congress of the International Council of the Aeronautical Sciences 2006 vol.3. Department of Aeronautical and Vehicle Engineering, 2006. [25] YIP L P, VIJGEN P M H W, HARDIN J D, et al. In-flight pressure distributions and skin-friction measurements on a subsonic transport high-lift wing section[J]. Journal of Aircraft,1993,32(3):529-538. [26] MACWILKINSON D G, BLACKERBY W T, PATERSON J H. Correaltion of full-scale drag predictions with flight measurements on the C-141A aircraft. Phase 2:Wind tunnel test, analysis, and prediction techniques. Volume 1:Drag predictions, wind tunnel data analysis and correlation[R].Washington,D.C.:NASA, 1974. [27] CROOK A. Skin-friction estimation at high Reynolds numbers and Reynolds-number effects for transport aircraft:44313785[R]. Standford:Center for Turbulence Research, 2002:427-438. [28] BLACKWELL J A. Preliminary study of effects of Reynolds number and boundary-layer transition location on shock-induced separation:NASA TN D-5003[R].Washington,D.C.:NASA,1969. [29] XU J K, BAI J Q, ZHANG Y, et al. Transition study of 3D aerodynamic configures using improved transport equations modeling[J]. Chinese Journal of Aeronautics, 2016, 29(4):874-881. [30] MENTER F R, SMIRNOV P E, LIU T, et al. A one-equation local correlation-based transition model[J]. Flow, Turbulence and Combustion, 2015, 95(4):583-619. [31] SA J H, PARK S H, KIM C J, et al. Low-Reynolds number flow computation for eppler 387 wing using hybrid DES/transition model[J]. Journal of Mechanical Science and Technology, 2015, 29(5):1837-1847. [32] WANG G, ZHANG M H, TAO Y J, et al. Research on analytical scaling method and scale effects for subscale flight test of blended wing body civil aircraft[J]. Aerospace Science and Technology, 2020, 106:106114. [33] OYIBO G A. Generic approach to determine optimum aeroelastic characteristics for composite forward-swept-wing aircraft[J]. AIAA Journal, 1984, 22(1):117-123. [34] LIVNE E, WEISSHAAR T A. Aeroelasticity of nonconventional airplane configurations-past and future[J]. Journal of Aircraft, 2003, 40(6):1047-1065. |