[1] 李沛峰, 张彬乾, 陈迎春, 等. 减小翼型激波阻力的鼓包流动控制技术[J]. 航空学报, 2011, 32(6):971-977. LI P F, ZHANG B Q, CHEN Y C, et al. Wave drag reduction of airfoil with shock control bump[J]. Acta Aeronautica et Astronautica Sinica, 2011, 32(6):971-977(in Chinese). [2] 张伟伟, 高传强, 叶正寅. 机翼跨声速抖振研究进展[J]. 航空学报, 2015, 36(4):1056-1075. ZHANG W W, GAO C Q, YE Z Y. Research advances of wing/airfoil transonic buffet[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(4):1056-1075(in Chinese). [3] 田云, 刘沛清, 彭健. 激波控制鼓包提高翼型跨声速抖振边界[J]. 航空学报, 2011, 32(8):1421-1428. TIAN Y, LIU P Q, PENG J. Using shock control bump to improve transonic buffet boundary of airfoil[J]. Acta Aeronautica et Astronautica Sinica, 2011, 32(8):1421-1428(in Chinese). [4] LEE B H K. Self-sustained shock oscillations on airfoils at transonic speeds[J]. Progress in Aerospace Sciences, 2001, 37(2):147-196. [5] XIAO Q, TSAI H M, LIU F. Numerical study of transonic buffet on a supercritical airfoil[J]. AIAA Journal, 2006, 44(3):620-628. [6] DECK S. Zonal-detached-eddy simulation of the flow around a high-lift configuration[J]. AIAA Journal, 2005, 43(11):2372-2384. [7] DECK S. Numerical simulation of transonic buffet over a supercritical airfoil[J]. AIAA Journal, 2005, 43(7):1556-1566. [8] IOVNOVICH M, RAVEH D E. Reynolds-averaged navier-stokes study of the shock-buffet instability mechanism[J]. AIAA Journal, 2012, 50(4):880-890. [9] GONCALVES E, HOUDEVILLE R. Turbulence model and numerical scheme assessment for buffet computations[J]. International Journal for Numerical Methods in Fluids, 2004, 46(11):1127-1152. [10] CARUANA D, MIGNOSI A, ROBITAILLIÉ C. Separated flow and buffeting control[J]. Flow, Turbulence and Combustion (formerly Applied Scientific Research), 2003, 71(1-4):221-245. [11] CARUANA D, MIGNOSI A, CORRōGE M, et al. Buffet and buffeting control in transonic flow[J]. Aerospace Science and Technology, 2005, 9(7):605-616. [12] IOVNOVICH M, RAVEH D E. Transonic unsteady aerodynamics in the vicinity of shock-buffet instability[J]. Journal of Fluids and Structures, 2012, 29:131-142. [13] 高传强, 张伟伟, 叶正寅. 基于谐振舵面的跨声速抖振抑制探究[J]. 航空学报, 2015, 36(10):3208-3217. GAO C Q, ZHANG W W, YE Z Y. Study on transonic buffet suppression with flapping rudder[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(10):3208-3217(in Chinese). [14] GAO C Q, ZHANG W W, YE Z Y. Numerical study on closed-loop control of transonic buffet suppression by trailing edge flap[J]. Computers & Fluids, 2016, 132:32-45. [15] GAO C, ZHANG W, KOU J. Active control of transonic buffet flow[J]. Journal of Fluid Mechanics, 2017,824:312-351. [16] ASHILL P R, LOCK W W. A novel technique for controlling shock strength of laminar flow aerofoil sections[C]//Proceedings 1 st European Forum on Laminar Flow Technology, 1992. [17] QIN N, WONG W S, LE MOIGNE A. Three-dimensional contour bumps for transonic wing drag reduction[J]. Proceedings of the Institution of Mechanical Engineers, Part G:Journal of Aerospace Engineering, 2008,222,5:619-629. [18] BIRKEMEYER J, ROSEMANN H, STANEWSKY E. Shock control on a swept wing[J]. Aerospace Science and Technology, 2000, 4(3):147-156. [19] MAYER R, LUTZ T, KRÄMER E. Numerical study on the ability of shock control bumps for buffet control[J]. AIAA Journal, 2018, 56(5):1978-1987. [20] TIAN Y, GAO S Q, LIU P Q, et al. Transonic buffet control research with two types of shock control bump based on RAE2822 airfoil[J]. Chinese Journal of Aeronautics, 2017, 30(5):1681-1696. [21] GEOGHEGAN J A, GIANNELIS N F, VIO G A. Parametric study of active shock control bumps for transonic shock buffet alleviation[C]//AIAA Scitech 2020 Forum. Reston:AIAA, 2020. [22] GEOGHEGAN J, GIANNELIS N, VIO G. A numerical investigation of the geometric parametrisation of shock control bumps for transonic shock oscillation control[J]. Fluids, 2020, 5(2):46. [23] 肖志祥, 罗堃宇, 刘健. 宽速域RANS-LES混合方法的发展及应用[J]. 空气动力学学报, 2017, 35(3):338-353. XIAO Z X, LUO K Y, LIU J. Developments and applications of hybrid RANS-LES methods for wide-speed-range flows[J]. Acta Aerodynamica Sinica, 2017, 35(3):338-353(in Chinese). [24] GIANNELIS N F, LEVINSKI O, VIO G A. Influence of Mach number and angle of attack on the two-dimensional transonic buffet phenomenon[J]. Aerospace Science and Technology, 2018, 78:89-101. [25] JACQUIN L, MOLTON P, DECK S, et al. An experimental study of shock oscillation over a transonic supercritical profile[C]//35th AIAA Fluid Dynamics Conference and Exhibit. Reston:AIAA, 2005. [26] JACQUIN L, MOLTON P, DECK S, et al. Experimental study of shock oscillation over a transonic supercritical profile[J]. AIAA Journal, 2009, 47(9):1985-1994. [27] GROSSI F, BRAZA M, HOARAU Y. Prediction of transonic buffet by delayed detached-eddy simulation[J]. AIAA Journal, 2014, 52(10):2300-2312. [28] HUANG J B, XIAO Z X, LIU J, et al. Simulation of shock wave buffet and its suppression on an OAT15A supercritical airfoil by IDDES[J]. Science China Physics, Mechanics and Astronomy, 2012, 55(2):260-271. [29] FUKUSHIMA Y, KAWAI S. Wall-modeled large-eddy simulation of transonic airfoil buffet at high Reynolds number[J]. AIAA Journal, 2018, 56(6):2372-2388. [30] ZHAO Y, FORHAD A. A general method for simulation of fluid flows with moving and compliant boundaries on unstructured grids[J]. Computer Methods in Applied Mechanics and Engineering, 2003, 192(39-40):4439-4466. [31] BRUCE P J K, COLLISS S P. Review of research into shock control bumps[J]. Shock Waves, 2015, 25(5):451-471. |