[1] SCHRAUF G. Status and perspectives of laminar flow[J].The Aeronautical Journal, 2005, 109(1102):639-644.
[2] THIBERT J J, RENEAUX J, SCHMITT R V. ONERA activities on drag reduction:ICAS-90-3.6.1[R]. 1990.
[3] LIEBECK R H. Design of the blended wing body subsonic transport[J]. Journal of Aircraft, 2004, 41(1):10-25.
[4] 朱自强, 吴宗成, 陈迎春, 等. 民机空气动力学设计先进技术[M]. 上海:上海交通大学出版社, 2013. ZHU Z Q, WU Z C, CHEN Y C, et al. Advanced technology of aerodynamic design for commercial aircraft[M]. Shanghai:Shanghai Jiaotong University Press, 2013(in Chinese).
[5] HOLMES B J, CLIFFORD J, MARTIN G L, et al. Manufacturing tolerances for natural laminar flow airframe surface:SAE paper 850863[R]. Pennsylvania:SAE International, 1985.
[6] 张正国. NASA未来先进民用飞机与推进系统设计[J] 国际航空, 2010(2):56-59. ZHANG Z G. Advanced civil aircraft and propulsion system[J]. International Aviation, 2010(2):56-59(in Chinese).
[7] 李广义, 张晋平. 人类对飞行的双重追求[J]. 国际航空,2011(2):47-50. LI G Y, ZHANG J P.Developing air transport and protecting environment simultaneously[J]. International Aviation, 2011(2):47-50(in Chinese).
[8] 温坤. 《欧盟2050年航空发展展望》出台[J]. 国际航空,2011(6):67-69. WEN K. Flightpath 2050:Eurpe's aviation vision[J]. International Aviation, 2011(6):67-69(in Chinese).
[9] GREEN J E. Laminar flow control-back to the future:AIAA-2008-3738[R]. Reston:AIAA, 2008.
[10] RESHOTKO E. Boundary layer instability and transition[J]. Annual Review of Fluid Mechanics, 1976, 8:311-349.
[11] MACK L M. Boundary layer linear stability theory:AGARD Rep. 709[R]. Paris:AGARD, 1984.
[12] SARIC W S, REED H L, WHITE E B. Stability and transition of three dimensional boundary layers[J]. Annual Review of Fluid Mechanics, 2003, 35:413-440.
[13] SARIC W S, CARPENTER A L, REED H L. Passive control of transition in three dimensional boundary layers with emphasis on discrete roughness elements[J]. Philosophical Transactions of the Royal Society A, 2011, 369:1352-1364.
[14] DEYHLE H, BIPPES H. Disturbance growth in an unstable three dimensional boundary layer and its dependence on initial conditions[J]. Journal of Fluid Mechanics, 1996, 316:73-113.
[15] BIPPES H. Environmental conditions and transition prediction in 3D boundary layers:AIAA-1997-1906[R]. Reston:AIAA, 1997.
[16] KOHAMA Y, SARIC W S, HOOS J A. A high frequency, secondly instability of crossflow vortices that leads to transition[C]//Proceedings of Royal Aerospace Society Conference on Boundary Layer/transition Control. Cambridge:Peterhouse College, 1991.
[17] MALIK M R, LI F, CHANG C L. Crossflow disturbances in three dimensional boundary layers:nonlinear development, wave interaction and secondary instability[J]. Journal of Fluid Mechanics, 1994, 268:1-36.
[18] WASSERMANN P, KLOKER M. Mechanisms and control of crossflow vortex induced transition in a 3-D boundary layer[J]. Journal of Fluid Mechanics, 2002, 456:49-84.
[19] ARNAL D. Boundary layer transition:Predictions based on linear theory. Progressing transition modeling:AGARD Rep. 793[R]. Paris:AGARD, 1994.
[20] REED H L, SARIC W S. Stability of three dimensional boundary layers[J]. Annual Review of Fluid Mechanics, 1989, 21:235-284.
[21] RESHOTKO E. Boundary layer instability, transition and control:AIAA-1994-0001[R]. Reston:AIAA, 1994.
[22] REED H L, SARIC W S, ARNAL D. Linear stability theory applied to boundary layers[J]. Annual Review of Fluid Mechanics, 1996, 28:389-428.
[23] KACHANOV Y S. Experimental studies of three dimensional instability of boundary layer:AIAA-1996-1976[R]. Reston:AIAA, 1996.
[24] ARNAL D. Laminar-turbulent transition:Research and application in France:AIAA-1997-1905[R]. Reston:AIAA, 1997.
[25] CROUCH J D. Transition prediction and control for airplane application:AIAA-1997-1907[R]. Reston:AIAA, 1997.
[26] HERBERT T. Parabolized stability equations[J]. Annual Review of Fluid Mechanics, 1997, 29:245-283.
[27] HERBERT T. Transition prediction and control for airplane application:AIAA-1997-1908[R]. Reston:AIAA, 1997.
[28] REIBERT M S, SARIC W S. Review of swept wing transition:AIAA-1997-1816[R]. Reston:AIAA, 1997.
[29] RESHOTKO E. Progress, accomplishments and issues in transition research:AIAA-1997-1815[R]. Reston:AIAA, 1997.
[30] SARIC W S, CARRILLO R B, JR, REIBRT M S. Nonlinear stability and transition in 3-D boundary layers[J]. Meccanica, 1998, 33:469-487.
[31] SARIC W S, CARRILLO R B, JR, REIBERT M S. Leading edge roughness as a transition control mechanism:AIAA-1998-0781[R]. Reston:AIAA, 1998.
[32] BEPPES H. Basic experiments on transition in three dimensional boundary layers dominated by crossflow instability[J]. Progress in Aerospace Sciences, 1999, 35(4):363-412.
[33] HAYNES T S, REED H L. Simulation of swept wing vortices using nonlinear parabolized stability equation[J]. Journal of Fluid Mechanics, 2000, 405:325-349.
[34] SARIC W S, REED H L. Crossflow instabilities theory & technology:AIAA-2003-0771[R]. Reston:AIAA, 2003.
[35] HALL P, MALIK M R, POLL D. On the stability of an infinite swept attachment line boundary layer[J]. Philosophical Transactions of the Royal Society A, 1984, 395:229-245.
[36] PFENNINGER W. Laminar flow control-Laminarization:AGARD Rep. 654[R]. Paris:AGARD, 1977.
[37] MADDALON D V, BRASLOW A L. Simulated-airline-service flight tests of laminar-flow control with perforated-surface suction system:NASA TP 2966[R]. Washington, D.C.:NASA, 1996.
[38] FRORYAN J M. On the G rtler instability of boundary layers[J]. Progress in Aerospace Sciences, 1991, 28:235-271.
[39] SARIC W S. G rtler vortices[J]. Annual Review of Fluid Mechanics, 1994, 26:379-409.
[40] COLLIER F S. An overview of recent subsonic laminar flow control flight experiments:AIAA-1993-2987[R]. Reston:AIAA, 1993.
[41] ANSCOMBE A, ILLING L N. Wind tunnel observation of boundary layer transition at varies angel of swept back:ARC R&M 2698[R]. 1956.
[42] WAGNER R D,MADDLON D V, BARTLETT D W,et al. Laminar flow flight experiments-a review[M]//Natural Laminar Flow and Laminar Flow Control. New York:Springer-Verlag, 1992:23-72.
[43] GRAY W E. The effect of wing sweep on laminar flow:TM No.Aero255[R]. 1952.
[44] FUJINO M. Design and development of the Hondajet[J]. Journal of Aircraft, 2005, 42(3):755-764.
[45] FUJINO M, YOSHIZAKI Y, KAWAMURA Y. Natural-laminar-flow airfoil development for a lightweight business jet[J]. Journal of Aircraft, 2003, 40(4):609-615.
[46] KIRCHNER M E. Laminar flow:challenge and potential:NASA CP-2487[R]. Washington, D.C.:NASA, 1987.
[47] JOSLIN R D. Overview of laminar flow control:NASA TP-208705[R]. Washington, D.C.:NASA, 1998.
[48] WONG P W C, MAINA M. Flow control studies for military aircraft applications:AIAA-2004-2313[R]. Reston:AIAA, 2004.
[49] HOLMES B J, OBARA C J, YIP L P. Natural laminar flow experiments on modern airplane surfaces:NASA TP-2256[R]. Washington, D.C.:NASA, 1984.
[50] BRASLOW A L, FISHER M C. Design considerations for application of laminar flow control systems to transport aircraft, Aircraft drag prediction and reduction:AGARD Rep.723[R]. Paris:AGARD, 1985.
[51] HEFNER J N, SABO F E. Research in natural flow and laminar flow control:NASA CP-2387[R]. Washington, D.C.:NASA, 1987.
[52] HARRIS R V, HEFNER J N. NASA laminar-flow program-past, present, future:NASA CP 2487[R]. Washington, D.C.:NASA, 1987.
[53] WAGNER R D, MADDLON D V, BARTLETT D W, et al. Fifty years of laminar flow flightesting:SAE Paper 88139[R]. Pennsylvania:SAE International, 1988.
[54] HAFNER J. Laminar flow control:introduction and overview[M]//Natural Laminar Flow and Laminar Flow Control. New York:Springer-Verlag, 1992:1-22.
[55] PFENNINGER W, WEMURU C S. Design philosophy of long range LFC transport with advance supercritical LFC airfoils[M]//Natural Laminar Flow and Laminar Flow Control. New York:Springer-Verlag, 1992:177-222.
[56] SCHRAUF G, BIELER H. First European forum on laminar flow technology:DGLR-Bericht 92-06[R]. 1992.
[57] ARCARA P C, BARTLETT D W, MECULLERS L A. Analysis for the application of hybrid laminar flow control to a long rang subsonic transport aircraft:SAE Paper 912113[R]. Pennsylvania:SAE International, 1991.
[58] CLARK R L, LANGE R H, WAGNER R D. Application of advanced technologies to future military transports:AD P006254[R]. 1990.
[59] PARIKH P G, NAGEL A L. Application of laminar flow control to supersonic transport configuration:NASA CR-181917[R]. Washington, D.C.:NASA, 1990.
[60] POWELL A G, AGRAWAL S, LACEY T R. Feasibility and benefits of laminar flow control on supersonic cruise airplane:NASA CR-181817[R]. Washington, D.C.:NASA, 1989.
[61] HANKS G W, LEDBETTER G E, DAVENPORT F J, et al. Hybrid laminar flow control study:NASA CR 165930[R]. Washington, D.C.:NASA, 1982.
[62] BUSHNELL D M, MALIK M R, HARVEY W D. Transition prediction in external flows via linear stability theory[R]. 1989.
[63] COUSTEIX J. Basic concepts on boundary layers:AGARD Rep. 786[R]. Paris:AGARD, 1992.
[64] ARNAL D, CASALIS G. Laminar-turbulent transition prediction in three-dimensional flows[J]. Progress in Aerospace Sciences, 2000, 36:173-191.
[65] SMITH A M O, GAMBERONI N. Transition,pressure gradient and stability theory:Report ES 26388[R]. California:Douglas Aircraft Co., 1956.
[66] VAN INGEN J L. A suggested semi-empirical method for the calculation of boundary layer transition region:Report UTH-24[R]. Delft:University of Technology, 1956.
[67] OERTEL H. 普朗特流体力学基础[M]. 朱自强, 钱翼稷, 李宗瑞, 译. 北京:科学出版社,2008. OERTEL H. Prandtl-Fuhrer durch die stromungslehre[M]. ZHU Z Q, QIAN Y J, LI Z R, translated. Beijing:Science Press, 2008(in Chinese).
[68] NAYFEH A. Stability of three dimensional boundary layers[J]. AIAA Journal, 1980, 18(4):406-416.
[69] CEBECI T, STEWARTSON K. On stability and transition in three dimensional flows[J]. AIAA Journal, 1980, 18(4):398-405.
[70] ARNAL D, CASALIS G, JUILLLEN J C. Experimental and theoretical analysis of natural transition on "infinite" swept wing[R]. 1990
[71] MACK L M. Stability of three dimensional boundary layer on swept wings at transonic speeds[R]. 1989.
[72] SCHRAUF G. Transition prediction using different linear stability analysis strategies:AIAA-1994-1848[R]. Reston:AIAA, 1994.
[73] SCHRAUF G, PERRAUD J, VITTIELLO D, et al. A comparison of linear stability theories using F100-flight test[R]. 1996.
[74] ARNAL D, GASPARIAN G, SALINAS H. Recent advances in theoretical methods for laminar-turbulent transition prediction:AIAA-1998-0223[R]. Reston:AIAA, 1998.
[75] ARNAL D, CASALIS G, SCHFRAUF G. The Euro TRANS project[R]. 1996.
[76] MOENS F, PERRAUD J, KRUMBEIN A M, et al. Transition prediction and impact on a 3D high lift wing configuration:AIAA-2007-4302[R]. Reston:AIAA, 2007.
[77] PERRAUD J, CLIQUET J, HOUDEVILLE R, et al. Transport aircraft three-dimensional high lift wing numerical transition prediction[J]. Journal of Aircraft, 2008, 45(5):1554-1563.
[78] KRUMBEIN A M. Automatic transition prediction and application to 3D wing configuration:AIAA-2006-0914[R]. Reston:AIAA, 2006.
[79] KRUMBEIN A M. Automatic transition prediction and application to three-dimensional high lift configuration[J]. Journal of Aircraft, 2007, 44(3):918-928.
[80] TOULOUGE T, PONSIW J, PERRAUD J, et al. Automatic transition prediction for RANS computations applied to a genetic high lift wing:AIAA-2007-1086[R]. Reston:AIAA, 2007.
[81] STOCK H W, DEGENHARDT E. A Simplified methods for transition prediction in two-dimensional incomprehensible boundary layers[J]. Zeitung Für Flugwissenschaft and Weltraum-forschung, 1989, 13:16-30.
[82] STOCK H W, HASSE W. Some aspects of linear stability calculations in industrial application[R]. 1996.
[83] CASALIS G, ARNAL D. ELFINⅡ Subtask2.3:Database method-development and validation of the simplified method for pure crossflow instability at low speed:ELFINⅡ, Technical report 45[R]. ONERA-CERT, 1996.
[84] ROGENDAAL R A. Variable-sweep transition flight experiment (VSTFE)-parametric pressure distribution boundary layer stability study and wing glove design task:NASA CR 3992[R]. Washington, D.C.:NASA, 1986.
[85] ROGENDAAL R A. Variable-sweep transition flight experiment (VSTFE)-stability code development and clean-up glove analysis:NASA CP 2847[R]. Washington, D.C.:NASA, 1987.
[86] STOCK H W. Infinite swept wing RANS computations with eN transition prediction-feasibility study:IB-24-2003/12[R]. DLR, 2002.
[87] CAMPBELL R L, CAMPBELL M L, STREIT T. Progress toward efficient laminar flow analysis and design:AIAA-2011-3527[R]. Reston:AIAA, 2011.
[88] GLICK P A. The distribution of insects, spiders, and mites in the air:Tech. Bull. No.673[R]. 1939
[89] COLEMAN W S. Roughness due to insects in boundary layer and flow control[M]. LACHMAN G V, editor. Pergamon Press, 1961:682-747.
[90] FOWELL L R, ANTONATOS P P. Some results from the X-21A program-part2:Laminar flow flight test results on the X21-A. In recent developments in boundary layer research-part IV:AGARD graph 97[R]. Paris:AGARD, 1965.
[91] DAVIS R E, MADDALON D V, WAGNER R D. Performance of laminar flow leading edge articles in cloud encounters:NASA CP-2487[R]. Washington, D.C.:NASA, 1987:161-193.
[92] WAGNER R D, MADDALOR D V, FISHER D F. Laminar flow control leading edge systems in simulated airline service[J]. Journal of Aircraft, 1990, 27(3):239-244.
[93] MADDALON D V. Hybrid laminar flow control flight research:NASA TM 4331[R]. Washington, D.C.:NASA, 1991.
[94] CROUCH J D. Boundary layer transition prediction for laminar flow control:AIAA-2015-2472[R]. Reston:AIAA, 2015.
[95] GRAHAM W. 欧洲启动"清洁天空"2计划[J]. 国际航空, 2014(8):79-80. GRAHAM W. Europe's clean sky 2 program begins[J]. International Aviation, 2014(8):79-80(in Chinese).
[96] REIBERT M S, SARIC W S, CARRILLO R B, JR, et al. Experiments in nonlinear saturation of stationary crossflow vortices in a swept wing boundary layer:AIAA-1996-0184[R]. Reston:AIAA, 1996.
[97] BELISLE M J, NEALE T P, REED H L, et al. Design of a swept wing laminar flow control flight experiment for transonic aircraft:AIAA-2010-4381[R]. Reston:AIAA, 2010.
[98] BELISLE M J, ROBERTS M W, TUFTS M W, et al. Design of the subsonic aircraft roughness glove experiment (SARGE):AIAA-2011-3524[R]. Reston:AIAA, 2011.
[99] HARTSHORN F, BELISLE M J, REED H L. Computational/optimization of a natural laminar flow experimental wing glove:AIAA-2012-0870[R]. Reston:AIAA, 2012.
[100] ROBERTS M W, REED H L, SARIC W S. A transonic laminar flow wing glove flight experiment:computational evaluation and linear stability:AIAA-2012-2668[R]. Reston:AIAA, 2012.
[101] BELISLE M J, ROBERTS M W, WILLIAMS T C, et al. A transonic laminar flow wing glove flight experiment:overview and design optimization:AIAA-2012-2667[R]. Reston:AIAA, 2012.
[102] MALIK M, LIAO W, LEE-RAUSCH F, et al. Computational analysis of the G-Ⅲ laminar flow glove:AIAA-2011-3525[R]. Reston:AIAA, 2012.
[103] MALIK M, LIAO W, LI F, et al. DRE-enhanced swept wing natural laminar flow at high Reynolds numbers:AIAA-2013-0412[R]. Reston:AIAA, 2013.
[104] 王元元, 杨敏. NASA开发亚音速研究实验平台[J]. 国际航空, 2014(10):70-72. WANG Y Y, YANG M. NASA develops subsonic research aircraft test[J]. International Aviation, 2014(10):70-72(in Chinese). |