吴云, 李应红
收稿日期:
2014-05-05
修回日期:
2014-09-07
出版日期:
2015-02-15
发布日期:
2014-09-19
通讯作者:
李应红 Tel.: 029-84787526 E-mail: yinghong_li@126.com
E-mail:yinghong_li@126.com
作者简介:
吴云 男,博士后,副教授,博士生导师。主要研究方向:等离子体流动控制。Tel:029-84787527 E-mail:wuyun1223@126.com;李应红 男,中国科学院院士,教授,博士生导师。主要研究方向:航空推进技术。Tel:029-84787526 E-mail:yinghong_li@126.com
基金资助:
国家自然科学基金(51336011,50906100);高等学校全国优秀博士学位论文作者专项资金(2011072);陕西省科学技术研究发展计划(2013KJXX-83)
WU Yun, LI Yinghong
Received:
2014-05-05
Revised:
2014-09-07
Online:
2015-02-15
Published:
2014-09-19
Supported by:
National Natural Science Foundation of China (51336011, 50906100); The Science Foundation for the Author of National Excellent Doctoral Dissertation of China (2011072); Science and Technology Development Program of Shaanxi Province(2013KJXX-83)
摘要:
等离子体流动控制是基于等离子体气动激励的新型主动流动控制技术,具有响应时间短、激励频带宽等显著技术优势,在改善飞行器/发动机空气动力特性方面具有广阔的应用前景,已成为国际上等离子体动力学与空气动力学交叉领域的前沿研究热点。鉴于此,从介质阻挡放电(DBD)、电弧放电等离子体气动激励特性,等离子体气动激励抑制流动分离、控制附面层、控制激波与激波/附面层干扰、控制压气机与涡轮内部流动、控制管道流动和飞行控制等方面,综合评述了国际上等离子体流动控制的研究进展情况;从创新等离子体气动激励方式,揭示等离子体气动激励与复杂流动的非定常耦合机制,突破等离子体流动控制系统关键技术等方面,对未来的发展进行展望。
中图分类号:
吴云, 李应红. 等离子体流动控制研究进展与展望[J]. 航空学报, 2015, 36(2): 381-405.
WU Yun, LI Yinghong. Progress and outlook of plasma flow control[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2015, 36(2): 381-405.
[1] Starikovskiy A, Aleksandrov N. Nonequilibrium plasma aerodynamics[M]. Rijeka: InTech, 2011: 55-96.[2] Bletzinger P, Ganguly B N, van Wie D, et al. Plasmas in high speed aerodynamics[J]. Journal of Physics D: Applied Physics, 2005, 38(4): R33-R57.[3] Shang J S, Surzhikov S T, Kimmel R, et al. Mechanisms of plasma actuators for hypersonic flow control[J]. Progress in Aerospace Sciences, 2005, 41(8): 642-668.[4] Corke T C, Enloe C L, Wilkinson S P. Dielectric barrier discharge plasma actuators for flow control[J]. Annual Review of Fluid Mechanics, 2010, 42: 505-529.[5] Adamovich I V, Little J, Nishihara M, et al. Nanosecond pulse surface discharges for high-speed flow control, AIAA-2012-3137[R]. Reston: AIAA, 2012.[6] Samimy M, Kearney-Fischer M, Kim J H. High-speed and high-Reynolds-number jet control using localized arc filament plasma actuators[J]. Journal of Propulsion and Power, 2012, 28(2): 269-280.[7] Popkin S H, Cybyk B Z, Land III H B, et al. Recent performance-based advances in SparkJet actuator design for supersonic flow applications, AIAA-2013-0322[R]. Reston: AIAA, 2013.[8] Moreau E. Airflow control by non-thermal plasma actuators[J]. Journal of Physics D: Applied Physics, 2007, 40(3): 605-636.[9] Caruana D. Plasmas for aerodynamic control[J]. Plasma Physics and Controlled Fusion, 2010, 52(12): 124045.[10] Benard N, Moreau E. EHD force and electric wind produced by surface dielectric barrier discharge plasma actuators used for airflow control, AIAA-2012-3136[R]. Reston: AIAA, 2012.[11] Li Y H, Wu Y, Song H M, et al. Plasma flow control[M]. Rijeka: InTech, 2011: 21-54.[12] Li Y H, Wu Y, Li J. Review of the investigation on plasma flow control in China[J]. International Journal of Flow Control, 2012, 4(1-2): 1-17.[13] Wang J J, Choi K S, Feng L H, et al. Recent developments in DBD plasma flow control[J]. Progress in Aerospace Sciences, 2013, 62: 52-78.[14] Nie W S, Cheng Y F, Che X K. A review on dielectric barrier discharge plasma flow control[J]. Advances in Mechanics, 2012, 42(6): 722-734 (in Chinese). 聂万胜, 程钰锋, 车学科. 介质阻挡放电等离子体流动控制研究进展[J]. 力学进展, 2012, 42(6): 722-734.[15] Li Y H, Wu Y, Song H M, et al. Research progress and mechanism analysis of plasma flow control[C]//Proceeding of 6th Annual Power Meeting of Chinese Society of Aeronautics and Astronautics. [S.l.]: Power Branch of Chinese Society of Aeronautics and Astronautics, 2006: 790-799 (in Chinese). 李应红, 吴云, 宋慧敏, 等. 等离子体流动控制的研究进展与机理探讨[C]//中国航空学会第六届动力年会论文集.[出版地不详]:中国航空学会动力专业分会, 2006: 790-799.[16] Khodataev K V. Microwave discharges and possible applications in aerospace technologies[J]. Journal of Propulsion and Power, 2008, 24(5): 962-972.[17] Hong Y J, Li Q, Fang J, et al. Advances in study of laser plasma drag reduction technology[J]. Acta Aeronautica et Astronautica Sinica, 2010, 31(1): 93-101 (in Chinese). 洪延姬, 李倩, 方娟, 等. 激光等离子体减阻技术研究进展[J]. 航空学报, 2010, 31(1): 93-101.[18] Roth J R, Sherman D M, Wilkinson S P. Boundary layer flow control with a one atmosphere uniform glow discharge surface plasma, AIAA-1998-0328[R]. Reston: AIAA, 1998.[19] Sasoh A, Kikuchi K, Sakai T. Spatio-temporal filament behaviour in a dielectric barrier discharge plasma actuator[J]. Journal of Physics D: Applied Physics, 2007, 40(14): 4181-4184.[20] Enloe C L, McLaughlin T E, van Dyken R D, et al. Mechanisms and responses of a single dielectric barrier plasma actuator: plasma morphology[J]. AIAA Journal, 2004, 42(3): 589-594.[21] Opaits D F, Shneider M N, Miles R B, et al. Surface charge in dielectric barrier discharge plasma actuators[J]. Physics of Plasmas, 2008, 15(7): 073505.[22] Wu Y, Li Y H, Jia M, et al. Experimental investigation into characteristics of plasma aerodynamic actuation generated by dielectric barrier discharge[J]. Chinese Journal of Aeronautics, 2010, 23(1): 39-45.[23] Whalley R D, Choi K S. The starting vortex in quiescent air induced by dielectric-barrier-discharge plasma[J]. Journal of Fluid Mechanics, 2012, 703: 192-203.[24] Benard N, Debien A, Moreau E. Time-dependent volume force produced by a non-thermal plasma actuator from experimental velocity field[J]. Journal of Physics D: Applied Physics, 2013, 46(24): 245201.[25] Kotsonis M, Ghaemi S. Forcing mechanisms of dielectric barrier discharge plasma actuators at carrier frequency of 625 Hz[J]. Journal of Applied Physics, 2011, 110(11): 113301.[26] Durscher R, Roy S. Evaluation of thrust measurement techniques for dielectric barrier discharge actuators[J]. Experiments in Fluids, 2012, 53(4): 1165-1176.[27] Font G I, Enloe C L, Newcomb J Y, et al. Effects of oxygen content on dielectric barrier discharge plasma actuator behavior[J]. AIAA Journal, 2011, 49(7): 1366-1373.[28] Kriegseis J, Duchmann A, Tropea C, et al. On the classification of dielectric barrier discharge plasma actuators: A comprehensive performance evaluation study[J]. Journal of Applied Physics, 2013, 114(5): 053301.[29] Wu Y, Li Y H, Jia M, et al. Influence of operating pressure on surface dielectric barrier discharge plasma aerodynamic actuation characteristics[J]. Applied Physics Letters, 2008, 93(3): 031503.[30] Kriegseis J, Grundmann S, Tropea C. Airflow influence on the discharge performance of dielectric barrier discharge plasma actuators[J]. Physics of Plasmas, 2012, 19(7): 073509.[31] Kriegseis J, Schröter D, Barckmann K, et al. Closed-loop performance control of dielectric-barrier-discharge plasma actuators[J]. AIAA Journal, 2013, 51(4): 961-967.[32] Shyy W, Jayaraman B, Andersson A. Modeling of glow discharge-induced fluid dynamics[J]. Journal of Applied Physics, 2002, 92(11): 6434-6443.[33] Singh K P, Roy S. Modeling plasma actuators with air chemistry for effective flow control[J]. Journal of Applied Physics, 2007, 101(12): 123308.[34] Boeuf J P, Pitchford L C. Electrohydrodynamic force and aerodynamic flow acceleration in surface dielectric barrier discharge[J]. Journal of Applied Physics, 2005, 97(10): 103307.[35] Nishida H, Nonomura T, Abe T. Three-dimensional simulations of discharge plasma evolution on a dielectric barrier discharge plasma actuator[J]. Journal of Applied Physics, 2014, 115(13): 133301.[36] Font G I, Morgan W L. Recent progress in dielectric barrier discharges for aerodynamic flow control[J]. Contribution to Plasma Physics, 2007, 47(1-2): 103-110.[37] Mertz B, Corke T C. Single-dielectric barrier discharge plasma actuator modelling and validation[J]. Journal of Fluid Mechanics, 2011, 669: 557-583.[38] Forte M, Jolibois J, Pons J, et al. Optimization of a dielectric barrier discharge actuator by stationary and non-stationary measurements of the induced flow velocity: application to airflow control[J]. Experiments in Fluids, 2007, 43(6): 917-928.[39] Thomas F O, Corke T C, Iqbal M, et al. Optimization of dielectric barrier discharge plasma actuators for active aerodynamic flow control[J]. AIAA Journal, 2009, 47(9): 2169-2178.[40] Debien A, Benard N, Moreau E. Streamer inhibition for improving force and electric wind produced by DBD actuators[J]. Journal of Physics D: Applied Physics, 2012, 44(21): 215201.[41] Zito J C, Durscher R J, Soni J, et al. Flow and force inducement using micron size dielectric barrier discharge actuators[J]. Applied Physics Letters, 2012, 100(19): 193502.[42] Opaits D F, Likhanskii A V, Neretti G, et al. Experimental investigation of dielectric barrier discharge plasma actuators driven by repetitive high-voltage nanosecond pulses with dc or low frequency sinusoidal bias[J]. Journal of Applied Physics, 2008, 104(4): 043304.[43] Kotsonis M, Ghaemi S. Performance improvement of plasma actuators using asymmetric high voltage waveforms[J]. Journal of Physics D: Applied Physics, 2012, 45(4): 045204.[44] Benard N, Mizuno A, Moreau E. A large-scale multiple dielectric barrier discharge actuator based on an innovative three-electrode design[J]. Journal of Physics D: Applied Physics, 2009, 42(23): 235204.[45] Moreau E, Sosa R, Artana G. Electric wind produced by surface plasma actuators: A new dielectric barrier discharge based on a three-electrode geometry[J]. Journal of Physics D: Applied Physics, 2008, 41(11): 115204.[46] Durscher R, Roy S. Novel multi-barrier plasma actuator for increased thrust, AIAA-2010-0965[R]. Reston: AIAA, 2010.[47] Erfani R, Erfani T, Utyuzhnikov S V, et al. Optimisation of multiple encapsulated electrode plasma actuator[J]. Aerospace Science and Technology, 2013, 26(1): 120-127.[48] Hao J N, Tian B L, Wang Y L, et al. Dielectric barrier plasma dynamics for active aerodynamic flow control[J]. Science China: Physics, Mechanics & Astronomy, 2014, 57(2): 345-353.[49] Durscher R, Roy S. Aerogel and ferroelectric dielectric materials for plasma actuators[J]. Journal of Physics D: Applied Physics, 2012, 45(1): 012001.[50] Fine N E, Brickner S J. Plasma catalysis for enhanced-thrust single dielectric barrier discharge plasma actuators[J]. AIAA Journal, 2010, 48(12): 2979-2982.[51] Starikovskiy A, Tkach N, Post M, et al. Dielectric barrier discharge control and thrust enhancement by diode surface, AIAA-2014-0144[R]. Reston: AIAA, 2014.[52] Santhanakrishnan A, Reasor D A, LeBeau R P. Characterization of linear plasma synthetic jet actuators in an initially quiescent medium[J]. Physics of Fluids, 2009, 21(4): 043602.[53] Humble R A, Craig S A, Vadyak J, et al. Spatiotemporal structure of a millimetric annular dielectric barrier discharge plasma actuator[J]. Physics of Fluids, 2013, 25(1): 017103.[54] Shi Z W, Fan B G. Experimental study on flow field characteristics of different plasma actuators[J]. Acta Aeronautica et Astronautica Sinica, 2011, 32(9): 1583-1589(in Chinese). 史志伟, 范本根. 不同结构等离子体激励器的流场特性实验研究[J]. 航空学报, 2011, 32(9): 1583-1589.[55] Liu Z F, Wang L Z, Fu S. Study of flow induced by sine wave and saw tooth plasma actuators[J]. Science China: Physics, Mechanics & Astronomy, 2011, 54(11): 2033-2039.[56] Riherd M, Roy S. Serpentine geometry plasma actuators for flow control[J]. Journal of Applied Physics, 2013, 114(8): 083303.[57] Joussot R, Leroy A, Weber R, et al. Plasma morphology and induced airflow characterization of a DBD actuator with serrated electrode[J]. Journal of Physics D: Applied Physics, 2013: 46(12): 125204.[58] Wu Y, Li Y H, Liang H, et al. Nanosecond pulsed discharge plasma actuation: characteristics and flow control performance, AIAA-2014-2118[R]. Reston: AIAA, 2014.[59] Takashima K, Zuzeek Y, Lempert W R, et al. Characterization of a surface dielectric barrier discharge plasma sustained by repetitive nanosecond pulses[J]. Plasma Sources Science and Technology, 2011, 20(5): 055009.[60] Starikovskii A Y, Nikipelov A A, Nudnova M M, et al. SDBD plasma actuator with nanosecond pulse-periodic discharge[J]. Plasma Sources Science and Technology, 2009, 18(3): 034015.[61] Benard N, Zouzou N, Claverie A, et al. Optical visualization and electrical characterization of fast-rising pulsed dielectric barrier discharge for airflow control applications[J]. Journal of Applied Physics, 2012, 111(3): 033303.[62] Wu Y, Li Y H, Jia M, et al. Experimental investigation of the nanosecond discharge plasma aerodynamic actuation[J]. Chinese Physics B, 2012, 21(4): 045202.[63] Wu Y, Li Y H, Jia M, et al. Optical emission characteristics of surface nanosecond pulsed dielectric barrier discharge plasma[J]. Journal of Applied Physics, 2013, 113(3): 033303.[64] Benard N, Bayoda K D, Pai D Z, et al. Electrical and optical characteristics of pulsed dielectric barrier discharges under altitude conditions, AIAA-2014-0145[R]. Reston: AIAA, 2014.[65] Zhao Z, Li J, Zheng J, et al. Study of shock and induced flow dynamics by pulsed nanosecond DBD plasma actuators, AIAA-2014-0402[R]. Reston: AIAA, 2014.[66] Dawson R A, Little J. Effects of pulse polarity on nanosecond pulse driven dielectric barrier discharge plasma actuators[J]. Journal of Applied Physics, 2014, 115(4): 043306.[67] Gaitonde D V, McCrink M H. A semi-empirical model of a nanosecond pulsed plasma actuator for flow control simulations with LES, AIAA-2012-0184[R]. Reston: AIAA, 2012.[68] Popov N A. Fast gas heating initiated by pulsed nanosecond discharge in atmospheric pressure air, AIAA-2013-1052[R]. Reston: AIAA, 2013.[69] Popov N A. Fast gas heating in a nitrogen-oxygen discharge plasma: I. Kinetic mechanism[J]. Journal of Physics D: Applied Physics, 2011, 44(28): 285201.[70] Mintoussov E I, Pendleton S J, Gerbault F G, et al. Fast gas heating in a nitrogen-oxygen discharge plasma: II. Energy exchange in the afterglow of a volume nanosecond discharge at moderate pressures[J]. Journal of Physics D: Applied Physics, 2011, 44(28): 285202.[71] Flitti A, Pancheshnyi S. Gas heating in fast pulsed discharges in N2-O2 mixtures[J]. The European Physical Journal Applied Physics, 2009, 45: 21001.[72] Takashima K, Yin Z, Adamovich I V. Measurements and kinetic modeling of energy coupling in volume and surface nanosecond pulse discharges[J]. Plasma Sources Science and Technology, 2013, 22(1): 015013.[73] Zheng J G, Zhao Z J, Li J, et al. Numerical simulation of nanosecond pulsed dielectric barrier discharge actuator in a quiescent flow[J]. Physics of Fluids, 2014, 26(3): 036102.[74] Poggie J, Adamovich I, Bisek N, et al. Numerical simulation of nanosecond-pulse electrical discharges[J]. Plasma Sources Science and Technology, 2013, 22(1): 015001.[75] Bak M S, Capplelli M A. Simulations of nanosecond-pulsed dielectric barrier discharges in atmospheric pressure air[J]. Journal of Applied Physics, 2013, 113(11): 113301.[76] Likhanskii A V, Shneider M N. Modeling of dielectric barrier discharge plasma actuators driven by repetitive nanosecond pulses[J]. Physics of Plasmas, 2007, 14(7): 073501.[77] Unfer T, Boeuf J P. Modelling of a nanosecond surface discharge actutator[J]. Journal of Physics D: Applied Physics, 2009, 42(19): 194017.[78] Che X K, Shao T, Nie W S, et al. Numerical simulation on a nanosecond-pulse surface dielectric barrier discharge actuator in near space[J]. Journal of Physics D: Applied Physics, 2012, 45(14): 145201.[79] Zhu Y F, Wu Y, Cui W, et al. Modelling of plasma aerodynamic actuation driven by nanosecond SDBD discharge[J]. Journal of Physics D: Applied Physics, 2013, 46(35): 355205.[80] Dedrick J, Boswell R W, Charles C. Asymmetric surface barrier discharge plasma driven by pulsed 13.56 MHz power in atmospheric pressure air[J]. Journal of Physics D: Applied Physics, 2010, 43(34): 342001.[81] Dedrick J, Im S, Cappelli M A, et al. Surface discharge plasma actuator driven by a pulsed 13.56 MHz-5 kHz voltage waveform[J]. Journal of Physics D: Applied Physics, 2013, 46(40): 405201.[82] Jin D, Li Y H, Jia M, et al. Investigation on the shockwave induced by surface arc plasma in quiescent air[J]. Chinese Physics B, 2014, 23(3): 035201.[83] Elias P Q, Castera P. Measurement of the impulse produced by a pulsed surface discharge actuator in air[J]. Journal of Physics D: Applied Physics, 2013, 46(36): 365204.[84] Leonov S B, Yarantsev D A. Near-surface electrical discharge in supersonic airflow: properties and flow control[J]. Journal of Propulsion and Power, 2008, 24(6): 1168-1181.[85] Li Y H, Wang J, Wang C, et al. Properties of surface arc discharge in a supersonic airflow[J]. Plasma Sources Science and Technology, 2010, 19(2): 025016.[86] Samimy M, Adamovich I, Webb B, et al. Development and characterization of plasma actuators for high-speed jet control[J]. Experiments in Fluids, 2004, 37(4): 577-588.[87] Kim J H, Nishihara M, Adamovich I V, et al. Development of localized arc filament RF plasma actuators for high-speed and high Reynolds number flow control[J]. Experiments in Fluids, 2010, 49(2): 497-511 .[88] Grossman K R, Cybyk B Z, Wie D M V. Sparkjet actuators for flow control, AIAA-2003-0057[R]. Reston: AIAA, 2003.[89] Cybyk B Z, Simon D H, Land H B. Experimental characterization of a supersonic flow control actuator, AIAA-2006-0478[R]. Reston: AIAA, 2006.[90] Haack S, Taylor T, Cybyk B Z. Experimental estimation of sparkJet efficiency, AIAA-2011-3997[R]. Reston: AIAA, 2011.[91] Jia M, Liang H, Song H M, et al. Characteristic of the spark discharge plasma jet driven by nanosecond pulses[J]. High Voltage Engineering, 2011, 37(6): 1493-1498 (in Chinese). 贾敏, 梁华, 宋慧敏, 等. 纳秒脉冲等离子体合成射流的气动激励特性[J]. 高电压技术, 2011, 37(6): 1493-1498.[92] Jin D, Li Y H, Jia M, et al. Experimental characterization of the plasma synthetic jet actuator[J]. Plasma Science and Technology, 2013, 15(10): 1033-1040.[93] Reedy T M, Kale N V, Dutton J C, et al. Experimental characterization of a pulsed plasma jet[J]. AIAA Journal, 2013, 51(8): 2027-2031.[94] Belinger A, Hardy P, Barricau P, et al. Influence of the energy dissipation rate in the discharge of a plasma synthetic jet actuator[J]. Journal of Physics D: Applied Physics, 2011, 44(36): 365201.[95] Belinger A, Hardy P, Gherardi N, et al. Influence of the spark discharge size on a plasma synthetic jet actuator[J]. IEEE Transactions on Plasma Science, 2011, 39(11): 2334-2335.[96] Wang L, Xia Z, Luo Z, et al. Three-electrode plasma synthetic jet actuator for high-speed flow control[J]. AIAA Journal, 2014, 52(4): 879-882.[97] Narayanaswamy V, Raja L L, Clemens N T. Characterization of a high-frequency pulsed-plasma jet actuator for supersonic flow control[J]. AIAA Journal, 2010, 48(2): 297-305.[98] Shin J. Characteristics of high speed electron-thermal jet activated by pulsed DC discharge[J]. Chinese Journal of Aeronautics, 2010, 23(5): 518-522.[99] Cybyk B Z, Wilkerson J T, Simon D H. Enabling high-fidelity modeling of a high-speed flow control actuator array, AIAA-2006-8034[R]. Reston: AIAA, 2006.[100] Wang L, Luo Z B, Xia Z X, et al. Energy efficiency and performance characteristics of plasma synthetic jet[J]. Acta Physica Sinica, 2013, 62(12): 125207 (in Chinese). 王林, 罗振兵, 夏智勋, 等. 等离子体合成射流能量效率及工作特性研究[J]. 物理学报, 2013, 62(12): 125207. |
[1] | 刘昌昊, 曹义华, 梅晓萌, 汪茂胜, 张广林. 高速直升机运输效能评估[J]. 航空学报, 2024, 45(9): 530182-530182. |
[2] | 王雪鹤, 柴春硕, 邢世龙, 樊枫, 黄水林. 共轴高速直升机反流区翼型设计及减阻机理[J]. 航空学报, 2024, 45(9): 529960-529960. |
[3] | 乔竑玮, 梁剑寒, 张林, 孙明波, 陈玉俏. 超声速燃烧中的概率密度函数方法研究进展[J]. 航空学报, 2024, 45(8): 28802-028802. |
[4] | 张依宁, 温昶煊, 庞博, 朱天昊, 何嘉欣, 金紫涵. 基于高精度回归共振的掩星观测轨道设计[J]. 航空学报, 2024, 45(8): 329151-329151. |
[5] | 王革, 王志邦, 王富祺, 关奔, 王立民, 宁浩然. 节流式燃/氧分离发动机准一维内弹道数值研究[J]. 航空学报, 2024, 45(7): 129111-129111. |
[6] | 谢玮, 罗振兵, 周岩, 刘强, 吴建军, 董昊. 高超声速双楔激波干扰定常射流控制试验研究[J]. 航空学报, 2024, 45(7): 128813-128813. |
[7] | 尹泽勇, 李概奇, 石建成, 银越千. 先进通用核心机派生发展的理念、方法及实践[J]. 航空学报, 2024, 45(7): 29713-029713. |
[8] | 童晟翔, 史志伟, 耿玺, 王力爽, 孙志坤, 陈其昌. 组合式仿枫树子飞行器与空中分体技术[J]. 航空学报, 2024, 45(6): 629590-629590. |
[9] | 安朝, 霍贵玺, 孟杨, 谢长川, 杨超. 翼尖铰接组合式无人机气动建模方法及布局参数影响[J]. 航空学报, 2024, 45(6): 629587-629587. |
[10] | 刘柳, 向先宏, 张宇飞, 陈海昕, 魏闯, 朱剑, 杨普. 一种高升阻比非常规翼身融合燕尾气动布局[J]. 航空学报, 2024, 45(6): 629630-629630. |
[11] | 陈树生, 贾苜梁, 刘衍旭, 高正红, 向星皓. 变体飞行器变形方式及气动布局设计关键技术研究进展[J]. 航空学报, 2024, 45(6): 629595-629595. |
[12] | 张艳华, 张登成, 周章文, 雷玉昌, 李林. 基于环量控制的虚拟舵面飞行器概念与设计综述[J]. 航空学报, 2024, 45(6): 629608-629608. |
[13] | 杨卫平. 新一代飞行器导航制导与控制技术发展趋势[J]. 航空学报, 2024, 45(5): 529720-529720. |
[14] | 邓景辉. 电动垂直起降飞行器的技术现状与发展[J]. 航空学报, 2024, 45(5): 529937-529937. |
[15] | 齐国宁, 吴宝海, 符江锋. 高速高压燃油齿轮泵典型卸荷槽对比分析[J]. 航空学报, 2024, 45(5): 529666-529666. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
版权所有 © 航空学报编辑部
版权所有 © 2011航空学报杂志社
主管单位:中国科学技术协会 主办单位:中国航空学会 北京航空航天大学