[1] Starikovskiy A, Aleksandrov N. Nonequilibrium plasma aerodynamics[M]. Rijeka: InTech, 2011: 55-96.
[2] Bletzinger P, Ganguly B N, van Wie D, et al. Plasmas in high speed aerodynamics[J]. Journal of Physics D: Applied Physics, 2005, 38(4): R33-R57.
[3] Shang J S, Surzhikov S T, Kimmel R, et al. Mechanisms of plasma actuators for hypersonic flow control[J]. Progress in Aerospace Sciences, 2005, 41(8): 642-668.
[4] Corke T C, Enloe C L, Wilkinson S P. Dielectric barrier discharge plasma actuators for flow control[J]. Annual Review of Fluid Mechanics, 2010, 42: 505-529.
[5] Adamovich I V, Little J, Nishihara M, et al. Nanosecond pulse surface discharges for high-speed flow control, AIAA-2012-3137[R]. Reston: AIAA, 2012.
[6] Samimy M, Kearney-Fischer M, Kim J H. High-speed and high-Reynolds-number jet control using localized arc filament plasma actuators[J]. Journal of Propulsion and Power, 2012, 28(2): 269-280.
[7] Popkin S H, Cybyk B Z, Land III H B, et al. Recent performance-based advances in SparkJet actuator design for supersonic flow applications, AIAA-2013-0322[R]. Reston: AIAA, 2013.
[8] Moreau E. Airflow control by non-thermal plasma actuators[J]. Journal of Physics D: Applied Physics, 2007, 40(3): 605-636.
[9] Caruana D. Plasmas for aerodynamic control[J]. Plasma Physics and Controlled Fusion, 2010, 52(12): 124045.
[10] Benard N, Moreau E. EHD force and electric wind produced by surface dielectric barrier discharge plasma actuators used for airflow control, AIAA-2012-3136[R]. Reston: AIAA, 2012.
[11] Li Y H, Wu Y, Song H M, et al. Plasma flow control[M]. Rijeka: InTech, 2011: 21-54.
[12] Li Y H, Wu Y, Li J. Review of the investigation on plasma flow control in China[J]. International Journal of Flow Control, 2012, 4(1-2): 1-17.
[13] Wang J J, Choi K S, Feng L H, et al. Recent developments in DBD plasma flow control[J]. Progress in Aerospace Sciences, 2013, 62: 52-78.
[14] Nie W S, Cheng Y F, Che X K. A review on dielectric barrier discharge plasma flow control[J]. Advances in Mechanics, 2012, 42(6): 722-734 (in Chinese). 聂万胜, 程钰锋, 车学科. 介质阻挡放电等离子体流动控制研究进展[J]. 力学进展, 2012, 42(6): 722-734.
[15] Li Y H, Wu Y, Song H M, et al. Research progress and mechanism analysis of plasma flow control[C]//Proceeding of 6th Annual Power Meeting of Chinese Society of Aeronautics and Astronautics. [S.l.]: Power Branch of Chinese Society of Aeronautics and Astronautics, 2006: 790-799 (in Chinese). 李应红, 吴云, 宋慧敏, 等. 等离子体流动控制的研究进展与机理探讨[C]//中国航空学会第六届动力年会论文集.[出版地不详]:中国航空学会动力专业分会, 2006: 790-799.
[16] Khodataev K V. Microwave discharges and possible applications in aerospace technologies[J]. Journal of Propulsion and Power, 2008, 24(5): 962-972.
[17] Hong Y J, Li Q, Fang J, et al. Advances in study of laser plasma drag reduction technology[J]. Acta Aeronautica et Astronautica Sinica, 2010, 31(1): 93-101 (in Chinese). 洪延姬, 李倩, 方娟, 等. 激光等离子体减阻技术研究进展[J]. 航空学报, 2010, 31(1): 93-101.
[18] Roth J R, Sherman D M, Wilkinson S P. Boundary layer flow control with a one atmosphere uniform glow discharge surface plasma, AIAA-1998-0328[R]. Reston: AIAA, 1998.
[19] Sasoh A, Kikuchi K, Sakai T. Spatio-temporal filament behaviour in a dielectric barrier discharge plasma actuator[J]. Journal of Physics D: Applied Physics, 2007, 40(14): 4181-4184.
[20] Enloe C L, McLaughlin T E, van Dyken R D, et al. Mechanisms and responses of a single dielectric barrier plasma actuator: plasma morphology[J]. AIAA Journal, 2004, 42(3): 589-594.
[21] Opaits D F, Shneider M N, Miles R B, et al. Surface charge in dielectric barrier discharge plasma actuators[J]. Physics of Plasmas, 2008, 15(7): 073505.
[22] Wu Y, Li Y H, Jia M, et al. Experimental investigation into characteristics of plasma aerodynamic actuation generated by dielectric barrier discharge[J]. Chinese Journal of Aeronautics, 2010, 23(1): 39-45.
[23] Whalley R D, Choi K S. The starting vortex in quiescent air induced by dielectric-barrier-discharge plasma[J]. Journal of Fluid Mechanics, 2012, 703: 192-203.
[24] Benard N, Debien A, Moreau E. Time-dependent volume force produced by a non-thermal plasma actuator from experimental velocity field[J]. Journal of Physics D: Applied Physics, 2013, 46(24): 245201.
[25] Kotsonis M, Ghaemi S. Forcing mechanisms of dielectric barrier discharge plasma actuators at carrier frequency of 625 Hz[J]. Journal of Applied Physics, 2011, 110(11): 113301.
[26] Durscher R, Roy S. Evaluation of thrust measurement techniques for dielectric barrier discharge actuators[J]. Experiments in Fluids, 2012, 53(4): 1165-1176.
[27] Font G I, Enloe C L, Newcomb J Y, et al. Effects of oxygen content on dielectric barrier discharge plasma actuator behavior[J]. AIAA Journal, 2011, 49(7): 1366-1373.
[28] Kriegseis J, Duchmann A, Tropea C, et al. On the classification of dielectric barrier discharge plasma actuators: A comprehensive performance evaluation study[J]. Journal of Applied Physics, 2013, 114(5): 053301.
[29] Wu Y, Li Y H, Jia M, et al. Influence of operating pressure on surface dielectric barrier discharge plasma aerodynamic actuation characteristics[J]. Applied Physics Letters, 2008, 93(3): 031503.
[30] Kriegseis J, Grundmann S, Tropea C. Airflow influence on the discharge performance of dielectric barrier discharge plasma actuators[J]. Physics of Plasmas, 2012, 19(7): 073509.
[31] Kriegseis J, Schröter D, Barckmann K, et al. Closed-loop performance control of dielectric-barrier-discharge plasma actuators[J]. AIAA Journal, 2013, 51(4): 961-967.
[32] Shyy W, Jayaraman B, Andersson A. Modeling of glow discharge-induced fluid dynamics[J]. Journal of Applied Physics, 2002, 92(11): 6434-6443.
[33] Singh K P, Roy S. Modeling plasma actuators with air chemistry for effective flow control[J]. Journal of Applied Physics, 2007, 101(12): 123308.
[34] Boeuf J P, Pitchford L C. Electrohydrodynamic force and aerodynamic flow acceleration in surface dielectric barrier discharge[J]. Journal of Applied Physics, 2005, 97(10): 103307.
[35] Nishida H, Nonomura T, Abe T. Three-dimensional simulations of discharge plasma evolution on a dielectric barrier discharge plasma actuator[J]. Journal of Applied Physics, 2014, 115(13): 133301.
[36] Font G I, Morgan W L. Recent progress in dielectric barrier discharges for aerodynamic flow control[J]. Contribution to Plasma Physics, 2007, 47(1-2): 103-110.
[37] Mertz B, Corke T C. Single-dielectric barrier discharge plasma actuator modelling and validation[J]. Journal of Fluid Mechanics, 2011, 669: 557-583.
[38] Forte M, Jolibois J, Pons J, et al. Optimization of a dielectric barrier discharge actuator by stationary and non-stationary measurements of the induced flow velocity: application to airflow control[J]. Experiments in Fluids, 2007, 43(6): 917-928.
[39] Thomas F O, Corke T C, Iqbal M, et al. Optimization of dielectric barrier discharge plasma actuators for active aerodynamic flow control[J]. AIAA Journal, 2009, 47(9): 2169-2178.
[40] Debien A, Benard N, Moreau E. Streamer inhibition for improving force and electric wind produced by DBD actuators[J]. Journal of Physics D: Applied Physics, 2012, 44(21): 215201.
[41] Zito J C, Durscher R J, Soni J, et al. Flow and force inducement using micron size dielectric barrier discharge actuators[J]. Applied Physics Letters, 2012, 100(19): 193502.
[42] Opaits D F, Likhanskii A V, Neretti G, et al. Experimental investigation of dielectric barrier discharge plasma actuators driven by repetitive high-voltage nanosecond pulses with dc or low frequency sinusoidal bias[J]. Journal of Applied Physics, 2008, 104(4): 043304.
[43] Kotsonis M, Ghaemi S. Performance improvement of plasma actuators using asymmetric high voltage waveforms[J]. Journal of Physics D: Applied Physics, 2012, 45(4): 045204.
[44] Benard N, Mizuno A, Moreau E. A large-scale multiple dielectric barrier discharge actuator based on an innovative three-electrode design[J]. Journal of Physics D: Applied Physics, 2009, 42(23): 235204.
[45] Moreau E, Sosa R, Artana G. Electric wind produced by surface plasma actuators: A new dielectric barrier discharge based on a three-electrode geometry[J]. Journal of Physics D: Applied Physics, 2008, 41(11): 115204.
[46] Durscher R, Roy S. Novel multi-barrier plasma actuator for increased thrust, AIAA-2010-0965[R]. Reston: AIAA, 2010.
[47] Erfani R, Erfani T, Utyuzhnikov S V, et al. Optimisation of multiple encapsulated electrode plasma actuator[J]. Aerospace Science and Technology, 2013, 26(1): 120-127.
[48] Hao J N, Tian B L, Wang Y L, et al. Dielectric barrier plasma dynamics for active aerodynamic flow control[J]. Science China: Physics, Mechanics & Astronomy, 2014, 57(2): 345-353.
[49] Durscher R, Roy S. Aerogel and ferroelectric dielectric materials for plasma actuators[J]. Journal of Physics D: Applied Physics, 2012, 45(1): 012001.
[50] Fine N E, Brickner S J. Plasma catalysis for enhanced-thrust single dielectric barrier discharge plasma actuators[J]. AIAA Journal, 2010, 48(12): 2979-2982.
[51] Starikovskiy A, Tkach N, Post M, et al. Dielectric barrier discharge control and thrust enhancement by diode surface, AIAA-2014-0144[R]. Reston: AIAA, 2014.
[52] Santhanakrishnan A, Reasor D A, LeBeau R P. Characterization of linear plasma synthetic jet actuators in an initially quiescent medium[J]. Physics of Fluids, 2009, 21(4): 043602.
[53] Humble R A, Craig S A, Vadyak J, et al. Spatiotemporal structure of a millimetric annular dielectric barrier discharge plasma actuator[J]. Physics of Fluids, 2013, 25(1): 017103.
[54] Shi Z W, Fan B G. Experimental study on flow field characteristics of different plasma actuators[J]. Acta Aeronautica et Astronautica Sinica, 2011, 32(9): 1583-1589(in Chinese). 史志伟, 范本根. 不同结构等离子体激励器的流场特性实验研究[J]. 航空学报, 2011, 32(9): 1583-1589.
[55] Liu Z F, Wang L Z, Fu S. Study of flow induced by sine wave and saw tooth plasma actuators[J]. Science China: Physics, Mechanics & Astronomy, 2011, 54(11): 2033-2039.
[56] Riherd M, Roy S. Serpentine geometry plasma actuators for flow control[J]. Journal of Applied Physics, 2013, 114(8): 083303.
[57] Joussot R, Leroy A, Weber R, et al. Plasma morphology and induced airflow characterization of a DBD actuator with serrated electrode[J]. Journal of Physics D: Applied Physics, 2013: 46(12): 125204.
[58] Wu Y, Li Y H, Liang H, et al. Nanosecond pulsed discharge plasma actuation: characteristics and flow control performance, AIAA-2014-2118[R]. Reston: AIAA, 2014.
[59] Takashima K, Zuzeek Y, Lempert W R, et al. Characterization of a surface dielectric barrier discharge plasma sustained by repetitive nanosecond pulses[J]. Plasma Sources Science and Technology, 2011, 20(5): 055009.
[60] Starikovskii A Y, Nikipelov A A, Nudnova M M, et al. SDBD plasma actuator with nanosecond pulse-periodic discharge[J]. Plasma Sources Science and Technology, 2009, 18(3): 034015.
[61] Benard N, Zouzou N, Claverie A, et al. Optical visualization and electrical characterization of fast-rising pulsed dielectric barrier discharge for airflow control applications[J]. Journal of Applied Physics, 2012, 111(3): 033303.
[62] Wu Y, Li Y H, Jia M, et al. Experimental investigation of the nanosecond discharge plasma aerodynamic actuation[J]. Chinese Physics B, 2012, 21(4): 045202.
[63] Wu Y, Li Y H, Jia M, et al. Optical emission characteristics of surface nanosecond pulsed dielectric barrier discharge plasma[J]. Journal of Applied Physics, 2013, 113(3): 033303.
[64] Benard N, Bayoda K D, Pai D Z, et al. Electrical and optical characteristics of pulsed dielectric barrier discharges under altitude conditions, AIAA-2014-0145[R]. Reston: AIAA, 2014.
[65] Zhao Z, Li J, Zheng J, et al. Study of shock and induced flow dynamics by pulsed nanosecond DBD plasma actuators, AIAA-2014-0402[R]. Reston: AIAA, 2014.
[66] Dawson R A, Little J. Effects of pulse polarity on nanosecond pulse driven dielectric barrier discharge plasma actuators[J]. Journal of Applied Physics, 2014, 115(4): 043306.
[67] Gaitonde D V, McCrink M H. A semi-empirical model of a nanosecond pulsed plasma actuator for flow control simulations with LES, AIAA-2012-0184[R]. Reston: AIAA, 2012.
[68] Popov N A. Fast gas heating initiated by pulsed nanosecond discharge in atmospheric pressure air, AIAA-2013-1052[R]. Reston: AIAA, 2013.
[69] Popov N A. Fast gas heating in a nitrogen-oxygen discharge plasma: I. Kinetic mechanism[J]. Journal of Physics D: Applied Physics, 2011, 44(28): 285201.
[70] Mintoussov E I, Pendleton S J, Gerbault F G, et al. Fast gas heating in a nitrogen-oxygen discharge plasma: II. Energy exchange in the afterglow of a volume nanosecond discharge at moderate pressures[J]. Journal of Physics D: Applied Physics, 2011, 44(28): 285202.
[71] Flitti A, Pancheshnyi S. Gas heating in fast pulsed discharges in N2-O2 mixtures[J]. The European Physical Journal Applied Physics, 2009, 45: 21001.
[72] Takashima K, Yin Z, Adamovich I V. Measurements and kinetic modeling of energy coupling in volume and surface nanosecond pulse discharges[J]. Plasma Sources Science and Technology, 2013, 22(1): 015013.
[73] Zheng J G, Zhao Z J, Li J, et al. Numerical simulation of nanosecond pulsed dielectric barrier discharge actuator in a quiescent flow[J]. Physics of Fluids, 2014, 26(3): 036102.
[74] Poggie J, Adamovich I, Bisek N, et al. Numerical simulation of nanosecond-pulse electrical discharges[J]. Plasma Sources Science and Technology, 2013, 22(1): 015001.
[75] Bak M S, Capplelli M A. Simulations of nanosecond-pulsed dielectric barrier discharges in atmospheric pressure air[J]. Journal of Applied Physics, 2013, 113(11): 113301.
[76] Likhanskii A V, Shneider M N. Modeling of dielectric barrier discharge plasma actuators driven by repetitive nanosecond pulses[J]. Physics of Plasmas, 2007, 14(7): 073501.
[77] Unfer T, Boeuf J P. Modelling of a nanosecond surface discharge actutator[J]. Journal of Physics D: Applied Physics, 2009, 42(19): 194017.
[78] Che X K, Shao T, Nie W S, et al. Numerical simulation on a nanosecond-pulse surface dielectric barrier discharge actuator in near space[J]. Journal of Physics D: Applied Physics, 2012, 45(14): 145201.
[79] Zhu Y F, Wu Y, Cui W, et al. Modelling of plasma aerodynamic actuation driven by nanosecond SDBD discharge[J]. Journal of Physics D: Applied Physics, 2013, 46(35): 355205.
[80] Dedrick J, Boswell R W, Charles C. Asymmetric surface barrier discharge plasma driven by pulsed 13.56 MHz power in atmospheric pressure air[J]. Journal of Physics D: Applied Physics, 2010, 43(34): 342001.
[81] Dedrick J, Im S, Cappelli M A, et al. Surface discharge plasma actuator driven by a pulsed 13.56 MHz-5 kHz voltage waveform[J]. Journal of Physics D: Applied Physics, 2013, 46(40): 405201.
[82] Jin D, Li Y H, Jia M, et al. Investigation on the shockwave induced by surface arc plasma in quiescent air[J]. Chinese Physics B, 2014, 23(3): 035201.
[83] Elias P Q, Castera P. Measurement of the impulse produced by a pulsed surface discharge actuator in air[J]. Journal of Physics D: Applied Physics, 2013, 46(36): 365204.
[84] Leonov S B, Yarantsev D A. Near-surface electrical discharge in supersonic airflow: properties and flow control[J]. Journal of Propulsion and Power, 2008, 24(6): 1168-1181.
[85] Li Y H, Wang J, Wang C, et al. Properties of surface arc discharge in a supersonic airflow[J]. Plasma Sources Science and Technology, 2010, 19(2): 025016.
[86] Samimy M, Adamovich I, Webb B, et al. Development and characterization of plasma actuators for high-speed jet control[J]. Experiments in Fluids, 2004, 37(4): 577-588.
[87] Kim J H, Nishihara M, Adamovich I V, et al. Development of localized arc filament RF plasma actuators for high-speed and high Reynolds number flow control[J]. Experiments in Fluids, 2010, 49(2): 497-511 .
[88] Grossman K R, Cybyk B Z, Wie D M V. Sparkjet actuators for flow control, AIAA-2003-0057[R]. Reston: AIAA, 2003.
[89] Cybyk B Z, Simon D H, Land H B. Experimental characterization of a supersonic flow control actuator, AIAA-2006-0478[R]. Reston: AIAA, 2006.
[90] Haack S, Taylor T, Cybyk B Z. Experimental estimation of sparkJet efficiency, AIAA-2011-3997[R]. Reston: AIAA, 2011.
[91] Jia M, Liang H, Song H M, et al. Characteristic of the spark discharge plasma jet driven by nanosecond pulses[J]. High Voltage Engineering, 2011, 37(6): 1493-1498 (in Chinese). 贾敏, 梁华, 宋慧敏, 等. 纳秒脉冲等离子体合成射流的气动激励特性[J]. 高电压技术, 2011, 37(6): 1493-1498.
[92] Jin D, Li Y H, Jia M, et al. Experimental characterization of the plasma synthetic jet actuator[J]. Plasma Science and Technology, 2013, 15(10): 1033-1040.
[93] Reedy T M, Kale N V, Dutton J C, et al. Experimental characterization of a pulsed plasma jet[J]. AIAA Journal, 2013, 51(8): 2027-2031.
[94] Belinger A, Hardy P, Barricau P, et al. Influence of the energy dissipation rate in the discharge of a plasma synthetic jet actuator[J]. Journal of Physics D: Applied Physics, 2011, 44(36): 365201.
[95] Belinger A, Hardy P, Gherardi N, et al. Influence of the spark discharge size on a plasma synthetic jet actuator[J]. IEEE Transactions on Plasma Science, 2011, 39(11): 2334-2335.
[96] Wang L, Xia Z, Luo Z, et al. Three-electrode plasma synthetic jet actuator for high-speed flow control[J]. AIAA Journal, 2014, 52(4): 879-882.
[97] Narayanaswamy V, Raja L L, Clemens N T. Characterization of a high-frequency pulsed-plasma jet actuator for supersonic flow control[J]. AIAA Journal, 2010, 48(2): 297-305.
[98] Shin J. Characteristics of high speed electron-thermal jet activated by pulsed DC discharge[J]. Chinese Journal of Aeronautics, 2010, 23(5): 518-522.
[99] Cybyk B Z, Wilkerson J T, Simon D H. Enabling high-fidelity modeling of a high-speed flow control actuator array, AIAA-2006-8034[R]. Reston: AIAA, 2006.
[100] Wang L, Luo Z B, Xia Z X, et al. Energy efficiency and performance characteristics of plasma synthetic jet[J]. Acta Physica Sinica, 2013, 62(12): 125207 (in Chinese). 王林, 罗振兵, 夏智勋, 等. 等离子体合成射流能量效率及工作特性研究[J]. 物理学报, 2013, 62(12): 125207. |