航空学报 > 2024, Vol. 45 Issue (5): 529666-529666   doi: 10.7527/S1000-6893.2023.29666

高速高压燃油齿轮泵典型卸荷槽对比分析

齐国宁1,2,3, 吴宝海2,3(), 符江锋4   

  1. 1.中国航发西安动力控制科技有限公司,西安 710077
    2.西北工业大学 航空发动机高性能制造工信部重点实验室,西安 710072
    3.西北工业大学 航空发动机先进制造技术教育部工程研究中心,西安 710072
    4.西北工业大学 动力与能源学院,西安 710072
  • 收稿日期:2023-09-28 修回日期:2023-10-08 接受日期:2023-10-18 出版日期:2023-11-02 发布日期:2023-11-01
  • 通讯作者: 吴宝海 E-mail:wubaohai@nwpu.edu.cn
  • 基金资助:
    国家科技重大专项(J2019-V-0016-0111);航空发动机及燃气轮机基础科学中心项目(P2022-B-V-003-001);国防基础科研项目(JCKY2022607C002);陕西省重点研发计划高校联合重点项目(2021GXLH-01-16);中国航发产学研合作项目(HFZL2022CXY013)

Comparative analysis on relief grooves of high-speed and high-pressure aeroengine fuel gear pumps

Guoning QI1,2,3, Baohai WU2,3(), Jiangfeng FU4   

  1. 1.AECC Xi’an Engine Control Technology Co. Ltd. ,Xi’an 710077,China
    2.Key Laboratory of High-Performance Manufacturing for Aero Engine,Ministry of Industry and Information Technology,Northwestern Polytechnical University,Xi’an 710072,China
    3.Engineering Research Center of Advanced Manufacturing Technology for Aero Engine,Ministry of Education,Northwestern Polytechnical University,Xi’an 710072,China
    4.School of Power and Energy,Northwestern Polytechnical University,Xi’an 710072,China
  • Received:2023-09-28 Revised:2023-10-08 Accepted:2023-10-18 Online:2023-11-02 Published:2023-11-01
  • Contact: Baohai WU E-mail:wubaohai@nwpu.edu.cn
  • Supported by:
    National Science and Technology Major Project(J2019-V-0016-0111);Science Center for Gas Turbine Project(P2022-B-V-003-001);Defense Industrial Technology Development Program(JCKY2022607C002);Universities Joint Key Projects of Key Research and Development Plan of Shaanxi Province(2021GXLH-01-16);Industry University Research Cooperation Project of AECC(HFZL2022CXY013)

摘要:

卸荷槽是缓解齿轮泵困油的有效措施,其设计合理与否直接影响齿轮泵的工作效率和寿命。本文给出了一种基于计算流体力学(CFD)的卸荷槽性能分析方法,重点开展了多种不同结构形式卸荷槽的性能对比研究,从困油压力、气体体积分数、出口流量、流量不均匀系数等多个技术指标评估对比了不同结构卸荷槽的工作性能。研究对比结果表明,卸荷槽F的结构形式与矩形、圆形及卸荷槽E相比综合性能最优,流量不均匀度仅为5.25%,困油压力峰值为18 MPa,具有困油压力小,容积效率高,流量品质高等优点,适用于高速、高压燃油齿轮泵方案设计;此外,在卸荷槽设计时,通过增大低压腔卸荷槽面积以及卸荷槽向低压腔偏移,有助于空化的抑制,并且能缓解困油,降低流量脉动,在新型卸荷槽F的结构设计时考虑该因素,可进一步提升卸荷槽的综合性能。

关键词: 航空发动机, 燃油齿轮泵, 卸荷槽, 困油, 空化

Abstract:

The relief groove is the most effective measure to alleviate oil trapping of gear pumps; therefore, its design directly affects the working efficiency and service life of the gear pump. This paper presents a performance analysis method for relief grooves based on computational fluid dynamics. A comparative study was conducted to evaluate the performance of different structural forms of relief grooves, focusing on technical indicators such as trapped oil pressure, gas volume fraction, outlet flow rate, and the flow rate non-uniformity coefficient. The results show that the relief groove F, with a flow non-uniformity of only 5.25% and a trapped oil pressure peak of 18 MPa, outperforms the rectangular, circular, and unloading slot E in terms of overall performance, exhibiting advantages of low trapped oil pressure, high volumetric efficiency, and high flow quality. These characteristics make it well-suited for the design of high-speed and high-pressure fuel gear pumps. In addition, increasing the size of the relief groove and positioning it towards the low-pressure chamber can reduce cavitation, oil entrapment, and flow pulsation. Designing the new unloading slot F with these factors in mind can improve its overall performance.

Key words: aeroengines, fuel gear pumps, relief grooves, trapped oil, cavitation

中图分类号: