1 |
胡鞍钢. 中国实现2030年前碳达峰目标及主要途径[J]. 北京工业大学学报(社会科学版), 2021, 21(3): 1-15.
|
|
HU A G. China’s goal of achieving carbon peak by 2030 and its main approaches[J]. Journal of Beijing University of Technology (Social Sciences Edition), 2021, 21(3): 1-15 (in Chinese).
|
2 |
陈良富, 张莹, 邹铭敏, 等. 大气CO2浓度卫星遥感进展[J]. 遥感学报, 2015, 19(1): 1-11.
|
|
CHEN L F, ZHANG Y, ZOU M M, et al. Overview of atmospheric CO2 remote sensing from space[J]. Journal of Remote Sensing, 2015, 19(1): 1-11 (in Chinese).
|
3 |
刘毅, 王婧, 车轲, 等. 温室气体的卫星遥感: 进展与趋势[J]. 遥感学报, 2021, 25(1): 53-64.
|
|
LIU Y, WANG J, CHE K, et al. Satellite remote sensing of greenhouse gases: Progress and trends[J]. National Remote Sensing Bulletin, 2021, 25(1): 53-64 (in Chinese).
|
4 |
宁津生, 姚宜斌, 张小红. 全球导航卫星系统发展综述[J]. 导航定位学报, 2013, 1(1): 3-8.
|
|
NING J S, YAO Y B, ZHANG X H. Review of the development of global satellite navigation system[J]. Journal of Navigation and Positioning, 2013, 1(1): 3-8 (in Chinese).
|
5 |
王也英, 符养, 杜晓勇, 等. 全球GNSS掩星计划进展[J]. 气象科技, 2009, 37(1): 74-78.
|
|
WANG Y Y, FU Y, DU X Y, et al. Advances in global GNSS occultation projects[J]. Meteorological Science and Technology, 2009, 37(1): 74-78 (in Chinese).
|
6 |
HAJJ G A, KURSINSKI E R, BERTIGER W I, et al. Initial results of GPS-LEO occultation measurements of earth’s atmosphere obtained with the GPS-MET experiment[C]∥BEUTLER G, MELBOURNE WG, HEIN GW, et al. GPS Trends in Precise Terrestrial, Airborne, and Spaceborne Applications. Berlin, Heidelberg: Springer, 1996: 144-153.
|
7 |
丁金才, 郭英华, 郭永润, 等. 利用COSMIC资料对17个台风热力结构的合成分析[J]. 热带气象学报, 2011, 27(1): 31-43.
|
|
DING J C, GUO Y H, GUO Y R, et al. The composite analysis of the thermal structure of 17 typhoons by using cosmic data[J]. Journal of Tropical Meteorology, 2011, 27(1): 31-43 (in Chinese).
|
8 |
莫平华, 欧明, 张风国. GNSS/LEO无线电掩星电离层探测仿真研究[J]. 全球定位系统, 2015, 40(3): 6-10.
|
|
MO P H, OU M, ZHANG F G. Simulation of GNSS/LEO based ionospheric radio occultation monitoring[J]. GNSS World of China, 2015, 40(3): 6-10 (in Chinese).
|
9 |
FONG C J, YEN N L, CHU V, et al. Space-based global weather monitoring system: FORMOSAT-3/COSMIC constellation and its follow-on mission[J]. Journal of Spacecraft and Rockets, 2009, 46(4): 883-891.
|
10 |
SCHREINER W S, WEISS J P, ANTHES R A, et al. COSMIC-2 radio occultation constellation: First results[J]. Geophysical Research Letters, 2020, 47(4): e86841.
|
11 |
王树志, 朱光武, 白伟华, 等. 风云三号C星全球导航卫星掩星探测仪首次实现北斗掩星探测[J]. 物理学报, 2015, 64(8): 408-415.
|
|
WANG S Z, ZHU G W, BAI W H, et al. For the first time fengyun3 C satellite-global navigation satellite system occultation sounder achieved spaceborne Bei Dou system radio occultation[J]. Acta Physica Sinica, 2015, 64(8): 408-415 (in Chinese).
|
12 |
吴春俊, 孙越强, 王先毅, 等. 风云三号D星天基BDS实时定位性能分析[J]. 武汉大学学报(信息科学版): 2023,48(2): 248-259.
|
|
WU C J, SUN Y Q, WANG X Y, et al. Assessment of position performance of BDS for space application based on FY-3D satellite[J]. Geomatics and Information Science of Wuhan University, 2023,48(2): 248-259 (in Chinese).
|
13 |
LUO X, WANG M C, DAI G M, et al. Constellation design for earth observation based on the characteristics of the satellite ground track[J]. Advances in Space Research, 2017, 59(7): 1740-1750.
|
14 |
ORTORE E, CINELLI M, CIRCI C. A ground track-based approach to design satellite constellations[J]. Aerospace Science and Technology, 2017, 69: 458-464.
|
15 |
IMOTO Y, SATOH S, OBATA T, et al. Optimal constellation design based on satellite ground tracks for Earth observation missions[J]. Acta Astronautica, 2023, 207: 1-9.
|
16 |
JUANG J C, TSAI Y F, CHU C H. On constellation design of multi-GNSS radio occultation mission[J]. Acta Astronautica, 2013, 82(1): 88-94.
|
17 |
XU X H, HAN Y, LUO J, et al. Seeking optimal GNSS radio occultation constellations using evolutionary algorithms[J]. Remote Sensing, 2019, 11(5): 571.
|
18 |
“航天三江杯”第八届中国研究生未来飞行器创新大赛挑战赛道-碳卫星大气观测轨道设计与优化赛题公布[EB/OL]. (2022-10-20)[2023-06-07]. .
|
|
The 8th China graduate future aircraft innovation competition of “Aerospace Sanjiang Cup” Challeng-e track-carbon satellite atmospheric observation orbit design and optimization competition was an-nounced[EB/OL]. (2022-10-20)[2023-06-07]. (in Chinese).
|
19 |
刘俊丽, 高扬. 十年一剑刃锋利,苦寒方得梅花香: 全国空间轨道设计竞赛发展历程回顾[J]. 力学与实践, 2019, 41(4): 488-497.
|
|
LIU J L, GAO Y. With ten years’ effort the sword edge is grinded sharp, after the cold winter plum flower blossoms—a review of China trajectory optimization competition[J]. Mechanics in Engineering, 2019, 41(4): 488-497 (in Chinese).
|
20 |
IZZO D, HENNES D, MÄRTENS M, et al. GTOC8: Results and methods of ESA advanced concepts team and JAXA-ISAS[DB/OL]. arXiv preprint: 1602.00849, 2016.
|
21 |
马剑, 孟雅哲, 朱小龙, 等. 特定区域密集观测的低轨卫星星座最优设计方法[J]. 中国科学: 技术科学, 2018, 48(2): 170-184.
|
|
MA J, MENG Y Z, ZHU X L, et al. Optimal design of low-earth-orbit satellite constellation for regional fast revisit[J]. Scientia Sinica (Technologica), 2018, 48(2): 170-184 (in Chinese).
|
22 |
ZHANG C, JIN J, ZHANG J R, et al. Problem B of 9th China trajectory optimization competition: Problem description and summary of the results[J]. Acta Astronautica, 2018, 150: 223-230.
|
23 |
ONG, X, IN, et al. GTOC9: results from the Xi’an satellite control center (team XSCC) [J]. Acta Futura, 2018, 11(1): 49-55.
|
24 |
RIDER L. Optimized polar orbit constellations for redundant earth coverage[J]. Journal of the Astronautical Sciences, 1985, 33: 147-161.
|
25 |
马原野. 近地全球重访星座轨道快速优化设计研究[D]. 北京: 中国科学院大学(中国科学院国家空间科学中心), 2019: 3-5.
|
|
MA Y Y. Research on rapid optimization design of global revisit constellation in low earth orbit[D].Beijing: National Space Science Center, Chinese Academy of Sciences, 2019: 3-5 (in Chinese).
|