航空学报 > 2024, Vol. 45 Issue (6): 629595-629595   doi: 10.7527/S1000-6893.2023.29595

飞行器新概念气动布局设计专栏

变体飞行器变形方式及气动布局设计关键技术研究进展

陈树生1(), 贾苜梁1, 刘衍旭1, 高正红1, 向星皓2   

  1. 1.西北工业大学 航空学院,西安 710072
    2.中国空气动力研究与发展中心,绵阳 621000
  • 收稿日期:2023-09-18 修回日期:2023-09-28 接受日期:2023-11-03 出版日期:2024-03-25 发布日期:2023-11-16
  • 通讯作者: 陈树生 E-mail:sshengchen@nwpu.edu.cn
  • 基金资助:
    中国科协青年人才托举工程(2022QNRC001);国家自然科学基金(92371109);空天飞行空气动力科学与技术全国重点实验室基金(SKLA-2022-KFKT-005)

Deformation modes and key technologies of aerodynamic layout design for morphing aircraft: Review

Shusheng CHEN1(), Muliang JIA1, Yanxu LIU1, Zhenghong GAO1, Xinghao XIANG2   

  1. 1.School of Aeronautics,Northwestern Polytechnical University,Xi’an 710072,China
    2.China Aerodynamics Research and Development Center,Mianyang 621000,China
  • Received:2023-09-18 Revised:2023-09-28 Accepted:2023-11-03 Online:2024-03-25 Published:2023-11-16
  • Contact: Shusheng CHEN E-mail:sshengchen@nwpu.edu.cn
  • Supported by:
    Young Elite Scientists Sponsorship Program by CAST(2022QNRC001);National Natural Science Foundation of China(92371109);Project of State Key Laboratory of Aerodynamics(SKLA-2022-KFKT-005)

摘要:

能够根据任务需求、飞行环境自适应改变外形来达到最佳飞行性能的变体飞行器已成为未来飞行器发展的重要方向之一。综述了变体飞行器变形方式及气动布局设计关键技术研究现状。首先,按照时间发展历程,将变体技术的发展分为简单机械变形、多维度柔性变形2个阶段。其次,按照变体部位和变形方式详细介绍了头部变体、机翼变体、动力装置变体和组合变体方案的发展历程和现状,重点阐述了可变后掠机翼、可变前掠机翼、折叠机翼、伸缩机翼、斜置机翼、连续变弯度机翼等机翼变体方案的研究进展,总结其在不同布局构型上的应用,并分析了各自的气动、操稳特性。之后,归纳了飞行器变体的实现目的,将其分为单域最优变构型、多域融合变构型、一器多能变构型3种。接着,与固定外形飞行器进行对比,梳理了变体飞行器因为变构型的实现而衍生的气动布局与总体协调设计、时变空气动力学效应评估、气动布局方案优化、多学科耦合设计等方面的关键技术难点,重点对变体飞行器动态气动力计算方法和气动优化设计技术的研究进展和现状进行了综述和分析。最后,展望了变体技术未来研究方向和发展前景,面向宽速域和大空域飞行需求,探索可以提高多飞行任务性能的新概念变形方式,建立智能变体设计模型及多学科强耦合一体化设计体系将成为重要发展趋势。

关键词: 变体飞行器, 变形方式, 机翼变体, 优化设计, 非定常效应, 多学科一体化

Abstract:

Morphing aircraft, capable of real-time shape deformation according to task requirements and flight conditions to achieve optimal flight performance, has emerged as a significant direction for the future development of aircraft. This paper reviews the research status of deformation modes and key technologies of aerodynamic layout design for morphing aircraft. Firstly, the development of morphing aircraft can be divided into two stages by the progression of time: the mechanical deformation stage and the flexible and muti-dimensional deformation stage. Then, this article summarizes morphing solutions for different parts of the aircraft, namely, the head deformation, wing deformation, power plant deformation, and combined deformation. It particularly explores the developmental history of various wing morphing schemes, discusses their applications in different aerodynamic configurations including variable sweep wing, variable forward sweep wing, folding wing, telescopic wing, oblique wing, continuous variable curvature wing, and analyzes their aerodynamic and stability characteristics, respectively. Next, the implementation objectives of morphing aircraft are summarized and divided into three types: single domain optimal variable configuration, multi-domain fusion variable configuration, and one vessel multi-energy variable configuration. Subsequently, compared with fixed shape aircraft, the key technical challenges in aerodynamic layout and overall coordination design, time-varying aerodynamic effect evaluation, aerodynamic layout scheme optimization, and multidisciplinary coupling design derived from the implementation of morphing aircraft are analyzed, with particular focus on the research progress and current status of dynamic aerodynamic calculation methods and aerodynamic optimization design technologies for morphing aircraft. Finally, the future research direction and development prospects of morphing technologies are envisioned. Targeting at the needs of wide velocity domain and large airspace flight, exploring new conceptual deformation methods that can improve the performance of multiple flight missions and establishing intelligent morphing design model and multidisciplinary strong coupling integrated design system will become important development trends.

Key words: morphing aircraft, deformation modes, morphing wing, optimization design, unsteady effect, multidisciplinary integration

中图分类号: