1 |
TAPPAN B C, RISHA G A. Solid chemical rocket propulsion system: US13828371[P]. 2014-04-24.
|
2 |
TAPPAN B C, DALLMANN N A, NOVAK A M, et al. High deltaV solid propulsion system for small Satellites[C]∥30th Annual AIAA/USU Conference on Small Satellites. Reston: AIAA, 2016.
|
3 |
LICHTHARDT J P. Stabilization of LANL’s novel segregated solid propellant rocket motor[D]. Socorro: New Mexico Institute of Mining and Technology, 2017: 14-21.
|
4 |
ZOU X R, WANG N F, HAN L, et al. Numerical investigation on regression rate and thrust regulation behaviors of a combined solid rocket motor with aluminum-based fuel[J]. Aerospace Science and Technology, 2021, 119: 107102.
|
5 |
OSIPOV V, LUCHINSKY D, SMELYANSKIY V, et al. IVHM system for a case breach fault in large segmented SRMs[C]∥ Proceedings of the AIAA Infotech@Aerospace Conference. Reston: AIAA, 2009.
|
6 |
CAVALLINI E, FAVINI B, DI GIACINTO M, et al. SRM internal ballistic numerical simulation by SPINBALL model[C]∥ Proceedings of the 45th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. Reston: AIAA, 2009.
|
7 |
CAVALLINI E, FAVINI B, DI GIACINTO M, et al. Internal ballistics simulation of a NAWC tactical SRM[J]. Journal of Applied Mechanics, 2011, 78(5): 051018.
|
8 |
GREATRIX D R. Scale effects on quasi-steady solid rocket internal ballistic behaviour[J]. Energies, 2010, 3(11): 1790-1804.
|
9 |
STEKHAREH S G M, MOSTOFIZADEH A, FOULADI N, et al. One dimensional internal ballistics simulation of solid rocket motor[J]. Iranian Journal of Mechanical Engineering Transactions of the ISME, 2013, 14(1): 5-16.
|
10 |
VIGANÒ D, ANNOVAZZI A, MAGGI F. Monte Carlo uncertainty quantification using quasi-1D SRM ballistic model[J]. International Journal of Aerospace Engineering, 2016, 2016: 3765796.
|
11 |
PONTI F, SOUHAIR N, MINI S, et al. 0D Unsteady -1D Quasi-Stationary Internal Ballistic coupling for ROBOOST simulation tool[C]∥ Proceedings of the AIAA Propulsion and Energy 2019 Forum. Reston: AIAA, 2019.
|
12 |
SUN L, MA Y J, BAO F T, et al. Extended application and experimental verification of a new erosive burning model coupled heat transfer between gas and grain based on a star-grain solid rocket motor[J]. Energies, 2022, 15(4): 1564.
|
13 |
KOOKER D, ZINN B. Triggering axial instabilities in solid rockets — Numerical predictions[C]∥ Proceedings of the 9th Propulsion Conference. Reston: AIAA, 1973.
|
14 |
LEVINE J N, BAUM J D. A numerical study of nonlinear instability phenomena in solid rocket motors[J]. AIAA Journal, 1983, 21(4): 557-564.
|
15 |
KARTHIKEYAN G, SHIMADA T. Quasi 1-D numerical analysis of combustion instability in hybrid rocket motor incorporating boundary layer lags[C]∥ Proceedings of the 52nd AIAA/SAE/ASEE Joint Propulsion Conference. Reston: AIAA, 2016.
|
16 |
UDDANTI N S, CRISPIN Y. CFD modeling of a hybrid rocket using a generalized one-dimensional model of the flame temperature[C]∥ Proceedings of the AIAA Propulsion and Energy 2019 Forum. Reston: AIAA, 2019.
|
17 |
HEISER W H, PRATT D T, DALEY D, et al. Hypersonic airbreathing propulsion[M]. Reston: AIAA, 1994.
|
18 |
BUSSING T, MURMAN E. A one-dimensional unsteady model of dual mode scramjet operation[C]∥ Proceedings of the 21st Aerospace Sciences Meeting. Reston: AIAA, 1983.
|
19 |
STARKEY R P, LEWIS M J. Sensitivity of hydrocarbon combustion modeling for hypersonic missile design[J]. Journal of Propulsion and Power, 2003, 19(1): 89-97.
|
20 |
TORREZ S, SCHOLTEN N, MICKA D, et al. A scramjet engine model including effects of precombustion shocks and dissociation[C]∥ Proceedings of the 44th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. Reston: AIAA, 2008.
|
21 |
TORREZ S M, DRISCOLL J F, IHME M, et al. Reduced-order modeling of turbulent reacting flows with application to ramjets and scramjets[J]. Journal of Propulsion and Power, 2011, 27(2): 371-382.
|
22 |
BIRZER C H, DOOLAN C J. Quasi-one-dimensional model of hydrogen-fueled scramjet combustors[J]. Journal of Propulsion and Power, 2009, 25(6): 1220-1225.
|
23 |
ZHANG D, TANG S, CAO L, et al. Research on control-oriented coupling modeling for air-breathing hypersonic propulsion systems[J]. Aerospace Science and Technology, 2019, 84: 143-157.
|
24 |
刘敬华, 凌文辉, 刘兴洲, 等. 超音速燃烧室性能非定常准一维流数值模拟[J]. 推进技术, 1998, 19(1): 1-6.
|
|
LIU J H, LING W H, LIU X Z, et al. A quasi one dimensional unsteady numerical analysis of supersonic combustor performance[J]. Journal of Propulsion Technology, 1998, 19(1): 1-6 (in Chinese).
|
25 |
王兰, 邢建文, 郑忠华, 等. 超燃冲压发动机内流性能的一维评估[J]. 推进技术, 2008, 29(6): 641-645.
|
|
WANG L, XING J W, ZHENG Z H, et al. One-dimensional evaluation of the scramjet flowpath performance[J]. Journal of Propulsion Technology, 2008, 29(6): 641-645 (in Chinese).
|
26 |
牛东圣, 侯凌云, 潘鹏飞. 不同燃料超声速燃烧室准一维计算模型[J]. 清华大学学报(自然科学版), 2013, 53(4): 567-572.
|
|
NIU D S, HOU L Y, PAN P F. Quasi-one-dimensional model of supersonic a combustor with various fuels[J]. Journal of Tsinghua University (Science and Technology), 2013, 53(4): 567-572 (in Chinese).
|
27 |
尤厚丰, 张兵, 李德宝. 超燃冲压发动机燃烧室的准一维计算与分析[J]. 推进技术, 2020, 41(3): 623-631.
|
|
YOU H F, ZHANG B, LI D B. Quasi-one-dimensional prediction and analysis of scramjet combustor[J]. Journal of Propulsion Technology, 2020, 41(3): 623-631 (in Chinese).
|
28 |
O’BRIEN T F, STARKEY R P, LEWIS M J. Quasi-one-dimensional high-speed engine model with finite-rate chemistry[J]. Journal of Propulsion and Power, 2001, 17(6): 1366-1374.
|
29 |
SERUSHKIN V V, SINDITSKII V P, EGORSHEV V Y, et al. Combustion mechanism of triaminoguanidine nitrate[J]. Propellants, Explosives, Pyrotechnics, 2013, 38(3): 345-350.
|
30 |
ADAMS G K, NEWMAN B H, ROBINS A B. The combustion of propellants based upon ammonium perchlorate[J]. Symposium (International) on Combustion, 1961, 8(1): 693-705.
|
31 |
SMITH T, SCHETZ J, BUI T. Development and ground testing of direct measuring skin friction gages for high enthalpy supersonic flight tests[C]∥ Proceedings of the 22nd AIAA Aerodynamic Measurement Technology and Ground Testing Conference. Reston: AIAA, 2002.
|
32 |
LIOU M S. A sequel to AUSM, Part II: AUSM+-up for all speeds[J]. Journal of Computational Physics, 2006, 214(1): 137-170.
|
33 |
VAN LEER B. Towards the ultimate conservative difference scheme. V. A second-order sequel to Godunov’s method[J]. Journal of Computational Physics, 1979, 32(1): 101-136.
|
34 |
ABGRALL R, KARNI S. Computations of compressible multifluids[J]. Journal of Computational Physics, 2001, 169(2): 594-623.
|
35 |
MACCORMACK R, BALDWIN B. A numerical method for solving the Navier-Stokes equations with application to shock-boundary layer interactions[C]∥ Proceedings of the 13th Aerospace Sciences Meeting. Reston: AIAA, 1975.
|
36 |
GOTTLIEB S, SHU C W. Total variation diminishing Runge-Kutta schemes[J]. Mathematics of Computation, 1998, 67(221): 73-85.
|
37 |
VERWER J G, SOMMEIJER B P, HUNDSDORFER W. RKC time-stepping for advection-diffusion-reaction problems[J]. Journal of Computational Physics, 2004, 201(1): 61-79.
|
38 |
王英男. 燃/氧分离组合固体发动机工作过程及性能预示[D]. 哈尔滨: 哈尔滨工程大学, 2021.
|
|
WANG Y N. The working process and performance prediction of segregated fuel-oxidizer solid motor[D].Harbin: Harbin Engineering University, 2021 (in Chinese).
|
39 |
AIKEN R C. Stiff computation[M]. New York: Oxford University Press, 1985.
|
40 |
LIU S Y, CHEN Z C, WANG L M, et al. Numerical study on transient regression rate and combustion characteristics of segregated AP-based oxidizer/TAGN-based fuel[J]. Fuel, 2023, 337: 126893.
|
41 |
BILLIG F S, GRENLESKI S E. Heat transfer in supersonic combustion processes[C]∥ Proceeding of International Heat Transfer Conference 4. Danbury: Begellhouse Inc., 1970: 1-11.
|
42 |
邓恒, 李志浩, 张时空, 等. 基于零维内弹道模型的变推力发动机喉栓型面设计与工作特性研究[J]. 推进技术, 2022, 43(11): 39-48.
|
|
DENG H, LI Z H, ZHANG S K, et al. Pintle profile design method based on zero-dimensional interior ballistic model and performance for variable thrust motor[J]. Journal of Propulsion Technology, 2022, 43(11): 39-48 (in Chinese).
|
43 |
成沉. 喉栓式固体变推力发动机推力调控方法及性能仿真研究[D]. 西安: 西北工业大学, 2017.
|
|
CHENG C. Thrust control method and performance simulation of pintle controlled solid rocket motor[D].Xi’an: Northwestern Polytechnical University, 2017 (in Chinese).
|