ACTA AERONAUTICAET ASTRONAUTICA SINICA ›› 2022, Vol. 43 ›› Issue (1): 625917.doi: 10.7527/S1000-6893.2021.25917
• Special Topic of Shock/Boundary Layer Interation Mechanism and Control • Previous Articles Next Articles
FAN Xiaohua1, TANG Zhigong2, WANG Gang1, YANG Yanguang2
Received:
2021-06-07
Revised:
2021-08-26
Online:
2022-01-15
Published:
2021-08-25
Supported by:
CLC Number:
FAN Xiaohua, TANG Zhigong, WANG Gang, YANG Yanguang. Review of low-frequency unsteadiness in shock wave/turbulent boundary layer interaction[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(1): 625917.
[1] DOLLING D S. Fifty years of shock-wave/boundary-layer interaction research: What next?[J]. AIAA Journal, 2001, 39(8): 1517-1531. [2] BABINSKY H, HARVEY J K. Shock wave-boundary-layer interactions[M]. Cambridge: Cambridge University Press, 2011: 1-5. [3] BABINSKY H, HARVEY J K. 激波边界层干扰[M]. 白菡尘, 译. 北京: 国防工业出版社, 2015: 1-5. BABINSKY H, HARVEY J K. Shock wave-boundary-layer interactions[M]. BAI H C, translated. Beijing: National Defense Industry Press, 2015: 1-5(in Chinese). [4] GAITONDE D V. Progress in shock wave/boundary layer interactions[J]. Progress in Aerospace Sciences, 2015, 72: 80-99. [5] 杨基明, 李祝飞, 朱雨建. 高超声速流动中的激波及相互作用[M]. 北京: 国防工业出版社, 2019: 157-177. YANG J M, LI Z F, ZHU Y J. Shock waves and shock interactions in hypersonic flow[M]. Beijing: National Defense Industry Press, 2019: 157-177(in Chinese). [6] HUANG W, WU H, YANG Y G, et al. Recent advances in the shock wave/boundary layer interaction and its control in internal and external flows[J]. Acta Astronautica, 2020, 174: 103-122. [7] CLEMENS N T, NARAYANASWAMY V. Low-frequency unsteadiness of shock wave/turbulent boundary layer interactions[J]. Annual Review of Fluid Mechanics, 2014, 46(1): 469-492. [8] DUSSAUGE J P, DUPONT P, DEBIÈVE J F. Unsteadiness in shock wave boundary layer interactions with separation[J]. Aerospace Science and Technology, 2006, 10(2): 85-91. [9] POGGIE J, BISEK N J, KIMMEL R L, et al. Spectral characteristics of separation shock unsteadiness[J]. AIAA Journal, 2015, 53(1): 200-214. [10] PLOTKIN K J. Shock wave oscillation driven by turbulent boundary-layer fluctuations[J]. AIAA Journal, 1975, 13(8): 1036-1040. [11] DOLLING D S, OR C T. Unsteadiness of the shock wave structure in attached and separated compression ramp flows[J]. Experiments in Fluids, 1985, 3(1): 24-32. [12] EVANS T, PODDAR K, SMITS A J. Compilation of wall pressure data for a shock wave boundary layer interaction generated by a blunt fin: 1908T[R]. Princeton: Princeton University, 1990. [13] GONSALEZ J C, DOLLING D S. Correlation of interaction sweepback effects on the dynamics of shock-induced turbulent separation: AIAA-1993-0776[R]. Reston: AIAA, 1993. [14] BRUSNIAK L, DOLLING D S. Physics of unsteady blunt-fin induced shock wave/turbulent boundary layer interactions[J]. Journal of Fluid Mechanics, 1994, 273: 375-409. [15] SARTOR F, METTOT C, BUR R, et al. Unsteadiness in transonic shock-wave/boundary-layer interactions: Experimental investigation and global stability analysis[J]. Journal of Fluid Mechanics, 2015, 781: 550-577. [16] ERENGIL M E, DOLLING D S. Unsteady wave structure near separation in a Mach 5 compression ramp interaction[J]. AIAA Journal, 1991, 29(5): 728-735. [17] RINGUETTE M, SMITS A. Wall-pressure measurements in a Mach 3 shock-wave turbulent boundary layer interaction at a DNS accessible Reynolds number: AIAA-2007-4113[R]. Reston: AIAA, 2007. [18] WU M W, MARTÍN M P. Analysis of shock motion in shockwave and turbulent boundary layer interaction using direct numerical simulation data[J]. Journal of Fluid Mechanics, 2008, 594: 71-83. [19] NARAYANASWAMY V, RAJA L L, CLEMENS N T. Control of unsteadiness of a shock wave/turbulent boundary layer interaction by using a pulsed-plasma-jet actuator[J]. Physics of Fluids, 2012, 24: 076101. [20] PORTER K M, POGGIE J. Selective upstream influence on the unsteadiness of a separated turbulent compression ramp flow[J]. Physics of Fluids, 2019, 31: 016104. [21] DESHPANDE A S, POGGIE J. Unsteadiness of shock-wave/boundary-layer interaction with sidewalls: AIAA-2020-0581[R]. Reston: AIAA, 2020. [22] DUPONT P, HADDAD C, DEBIÈVE J F. Space and time organization in a shock-induced separated boundary layer[J]. Journal of Fluid Mechanics, 2006, 559: 255-277. [23] TOUBER E, SANDHAM N. Oblique shock impinging on a turbulent boundary layer: Low-frequency mechanisms: AIAA-2008-4170[R]. Reston: AIAA, 2008. [24] AGOSTINI L, LARCHEVE^QUE L, DUPONT P. Mechanism of shock unsteadiness in separated shock/boundary-layer interactions[J]. Physics of Fluids, 2015, 27: 126103. [25] 王博. 激波/湍流边界层相互作用流场组织结构研究[D]. 长沙: 国防科技大学, 2015: 89-94. WANG B. The investigation into the shock wave/boundary-layer interaction flow field organization[D]. Changsha: National University of Defense Technology, 2015: 89-94(in Chinese). [26] PASQUARIELLO V, HICKEL S, ADAMS N A. Unsteady effects of strong shock-wave/boundary-layer interaction at high Reynolds number[J]. Journal of Fluid Mechanics, 2017, 823: 617-657. [27] PADMANABHAN S, CASTRO MALDONADO J, THREADGILL J A, et al. Experimental study of swept impinging oblique shock boundary layer interaction: AIAA-2019-0340[R]. Reston: AIAA, 2019. [28] 童福林, 董思卫, 段俊亦, 等. 激波/湍流边界层干扰三维分离泡直接数值模拟[J/OL]. 航空学报,(2021-04-09)[2021-07-16].https://kns.cnki.net/kcms/detail/11.1929.V.20210409.0916.004.html. TONG F L, DONG S W, DUAN J Y, et al. Direct numerical simulation of 3D separation bubble in shock wave and supersonic boundary layer interaction[J/OL]. Acta Aeronautica et Astronautica Sinica,(2021-04-09)[2021-07-16]. https://kns.cnki.net/kcms/detail/11.1929.V.20210409.0916.004.html. [29] DOLLING D S, SMITH D R. Unsteady shock-induced separation in Mach 5 cylinder interactions[J]. AIAA Journal, 1989, 27(12): 1598-1706. [30] DOLLING D S, BRUSNIAK L. Separation shock motion in fin, cylinder, and compression ramp-induced turbulent interactions[J]. AIAA Journal, 1989, 27(6): 734-742. [31] COMBS C S, SCHMISSEUR J D, BATHEL B F, et al. Unsteady analysis of shock-wave/boundary-layer interaction experiments at Mach 4.2[J]. AIAA Journal, 2019, 57(11): 4715-4724. [32] SOUVEREIN L J, DUPONT P, DEBIÈVE J F, et al. Effect of interaction strength on unsteadiness in shock-wave-induced separations[J]. AIAA Journal, 2010, 48(7): 1480-1493. [33] HUMBLE R A, SCARANO F, VAN OUDHEUSDEN B W. Unsteady aspects of an incident shock wave/turbulent boundary layer interaction[J]. Journal of Fluid Mechanics, 2009, 635: 47-74. [34] THREADGILL J A, BRUCE P J. Unsteadiness in shock wave boundary layer interactions across multiple interaction configurations: AIAA-2015-1977[R]. Reston: AIAA, 2015. [35] BERESH S J, CLEMENS N T, DOLLING D S. Relationship between upstream turbulent boundary-layer velocity fluctuations and separation shock unsteadiness[J]. AIAA Journal, 2002, 40(12): 2412-2422. [36] HOU Y X, CLEMENS N T, DOLLING D S. Wide-field PIV study of shock-induced turbulent boundary layer separation: AIAA-2003-0441[R]. Reston: AIAA, 2003. [37] GANAPATHISUBRAMANI B, CLEMENS N T, DOLLING D S. Large-scale motions in a supersonic turbulent boundary layer[J]. Journal of Fluid Mechanics, 2006, 556: 271-282. [38] GANAPATHISUBRAMANI B, CLEMENS N T, DOLLING D S. Effects of upstream boundary layer on the unsteadiness of shock-induced separation[J]. Journal of Fluid Mechanics, 2007, 585: 369-394. [39] GANAPATHISUBRAMANI B, CLEMENS N T, DOLLING D S. Low-frequency dynamics of shock-induced separation in a compression ramp interaction[J]. Journal of Fluid Mechanics, 2009, 636: 397-425. [40] HUMBLE R A, ELSINGA G E, SCARANO F, et al. Three-dimensional instantaneous structure of a shock wave/turbulent boundary layer interaction[J]. Journal of Fluid Mechanics, 2009, 622: 33-62. [41] VANSTONE L, SALEEM M, SECKIN S, et al. Experimental investigation of unsteadiness of swept-ramp shock/boundary layer interactions at Mach 2: AIAA-2015-2932[R]. Reston: AIAA, 2015. [42] VANSTONE L, MUSTA M N, CLEMENS N T, et al. Investigation of unsteadiness in a Mach 2 swept-ramp shock/boundary-layer interaction using 50 kHz PIV: AIAA-2016-3338[R]. Reston: AIAA, 2016. [43] VANSTONE L, SALEEM M, SECKIN S, et al. Role of boundary-layer on unsteadiness on a Mach 2 swept-ramp shock/boundary-layer interaction using 50 kHz PIV: AIAA-2017-0757[R]. Reston: AIAA, 2017. [44] VANSTONE L, CLEMENS N T. Proper orthogonal decomposition analysis of swept-ramp shock-wave/boundary-layer unsteadiness at Mach 2[J]. AIAA Journal, 2019, 57(8): 3395-3409. [45] DUPONT P, PIPONNIAU S, SIDORENKO A, et al. Investigation by particle image velocimetry measurements of oblique shock reflection with separation[J]. AIAA Journal, 2008, 46(6): 1365-1370. [46] PIROZZOLI S, GRASSO F. Direct numerical simulation of impinging shock wave/turbulent boundary layer interaction at M=2.25[J]. Physics of Fluids, 2006, 18: 065113. [47] PADMANABHAN S, MALDONADO J C, THREADGILL J A, et al. Root influence on the unsteady characteristics of swept impinging oblique SBLIs: AIAA-2020-0580[R]. Reston: AIAA, 2020. [48] PIPONNIAU S, DUSSAUGE J P, DEBIÈVE J F, et al. A simple model for low-frequency unsteadiness in shock-induced separation[J]. Journal of Fluid Mechanics, 2009, 629: 87-108. [49] PRIEBE S, MARTÍN M P. Low-frequency unsteadiness in shock wave-turbulent boundary layer interaction[J]. Journal of Fluid Mechanics, 2012, 699: 1-49. [50] HUANG X, ESTRUCH-SAMPER D. Low-frequency unsteadiness of swept shock-wave/turbulent-boundary-layer interaction[J]. Journal of Fluid Mechanics, 2018, 856: 797-821. [51] TOUBER E, SANDHAM N D. Large-eddy simulation of low-frequency unsteadiness in a turbulent shock-induced separation bubble[J]. Theoretical and Computational Fluid Dynamics, 2009, 23(2): 79-107. [52] ADLER M C, GAITONDE D V. Dynamic linear response of a shock/turbulent-boundary-layer interaction using constrained perturbations[J]. Journal of Fluid Mechanics, 2018, 840: 291-341. [53] PRIEBE S, TU J H, ROWLEY C W, et al. Low-frequency dynamics in a shock-induced separated flow[J]. Journal of Fluid Mechanics, 2016, 807: 441-477. [54] CAO S B, KLIOUTCHNIKOV I, OLIVIER H. Görtler vortices in hypersonic flow on compression ramps[J]. AIAA Journal, 2019, 57(9): 3874-3884. [55] WU W, MENEVEAU C, MITTAL R. Spatio-temporal dynamics of turbulent separation bubbles[J]. Journal of Fluid Mechanics, 2020, 883: A45. [56] ZHUANG Y, TAN H J, LIU Y Z, et al. High resolution visualization of Görtler-like vortices in supersonic compression ramp flow[J]. Journal of Visualization, 2017, 20(3): 505-508. [57] ZHUANG Y, TAN H J, LI X, et al. Görtler-like vortices in an impinging shock wave/turbulent boundary layer interaction flow[J]. Physics of Fluids, 2018, 30: 061702. [58] 陆小革, 易仕和, 牛海波, 等. 不同入射激波条件下激波与湍流边界层干扰的实验研究[J]. 中国科学: 物理学力学天文学, 2020, 50(10): 61-72. LU X G, YI S H, NIU H B, et al. Experimental study on shock and turbulent boundary layer interactions under different incident shock waves[J]. Scientia Sinica(Physica, Mechanica & Astronomica), 2020, 50(10): 61-72(in Chinese). [59] TOUBER E, SANDHAM N D. Low-order stochastic modelling of low-frequency motions in reflected shock-wave/boundary-layer interactions[J]. Journal of Fluid Mechanics, 2011, 671: 417-465. [60] NICHOLS J W, LARSSON J, BERNARDINI M, et al. Stability and modal analysis of shock/boundary layer interactions[J]. Theoretical and Computational Fluid Dynamics, 2017, 31: 33-50. [61] SOUVEREIN L J, VAN OUDHEUSDEN B W, SCARANO F, et al. Application of a dual-plane particle image velocimetry(dual-PIV) technique for the unsteadiness characterization of a shock wave turbulent boundary layer interaction[J]. Measurement Science and Technology, 2009, 20: 074003. [62] MARTÍN M P, PRIEBE S, HELM C M. Upstream and downstream influence on STBLI instability: AIAA-2016-3341[R]. Reston: AIAA, 2016. [63] BRUCE P J K, BURTON D M F, TITCHENER N A, et al. Corner effect and separation in transonic channel flows[J]. Journal of Fluid Mechanics, 2011, 679: 247-262. [64] BABINSKY H, OOREBEEK J, COTTINGHAM T. Corner effects in reflecting oblique shock-wave/boundary-layer interactions: AIAA-2013-0859[R]. Reston: AIAA, 2013. [65] WANG B, SANDHAM N D, HU Z W, et al. Numerical study of oblique shock-wave/boundary-layer interaction considering sidewall effects[J]. Journal of Fluid Mechanics, 2015, 767: 526-561. [66] XIANG X, BABINSKY H. Corner effects in oblique shock wave/boundary layer interactions in rectangular channels: AIAA-2017-0984[R]. Reston: AIAA, 2017. [67] LU X G, YI S H, HE L, et al. Experimental study on unsteady characteristics of shock and turbulent boundary layer interactions[J]. Fluid Dynamics, 2020, 55(4): 566-577. [68] ADLER M C, GAITONDE D V. Dynamics of strong swept-shock/turbulent-boundary-layer interactions[J]. Journal of Fluid Mechanics, 2020, 896: A29. [69] 黄蓉. 高超声速内外流中若干典型脉动压力问题[D]. 合肥: 中国科学技术大学, 2019: 31-51. HUANG R. Characteristics of the fluctuating pressure in the internal/external integration flow of a hypersonic vehicle[D]. Hefei: University of Science and Technology of China, 2019: 31-51(in Chinese). [70] WANG Z A, CHANG J T, HOU W X, et al. Low-frequency unsteadiness of shock-wave/boundary-layer interaction in an isolator with background waves[J]. Physics of Fluids, 2020, 32: 056105. [71] WANG Z A, CHANG J T, HOU W X, et al. Propagation of shock-wave/boundary-layer interaction unsteadiness in attached and separated flows[J]. AIP Advances, 2020, 10: 105011. [72] SOUVEREIN L J, BAKKER P G, DUPONT P. A scaling analysis for turbulent shock-wave/boundary-layer interactions[J]. Journal of Fluid Mechanics, 2013, 714: 505-535. [73] HONG Y T, LI Z F, YANG J M. Scaling of interaction lengths for hypersonic shock wave/turbulent boundary layer interactions[J]. Chinese Journal of Aeronautics, 2021, 34(5): 504-509. [74] BENEK J A, SUCHYTA C J, BABINSKY H. The effect of wind tunnel size and shock strength on incident shock boundary layer interaction experiments: AIAA-2014-3336[R]. Reston: AIAA, 2014. [75] SANSICA A, SANDHAM N D, HU Z. Forced response of a laminar shock-induced separation bubble[J]. Physics of Fluids, 2014, 26: 093601. [76] LARCHEVÊQUE L. Low-and medium-frequency unsteadinesses in a transitional shock-boundary reflection with separation: AIAA-2016-1833[R]. Reston: AIAA, 2016. [77] SANSICA A, SANDHAM N D, HU Z W. Instability and low-frequency unsteadiness in a shock-induced laminar separation bubble[J]. Journal of Fluid Mechanics, 2016, 798: 5-26. [78] HILDEBRAND N, DWIVEDI A, NICHOLS J W, et al. Simulation and stability analysis of oblique shock-wave/boundary-layer interactions at Mach 5.92[J]. Physical Review Fluids, 2018, 3: 013906. [79] 童福林, 李新亮, 唐志共. 激波与转捩边界层干扰非定常特性数值分析[J]. 力学学报, 2017, 49(1): 93-104. TONG F L, LI X L, TANG Z G. Numerical analysis of unsteady motion in shock wave/transitional boundary layer interaction[J]. Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(1): 93-104(in Chinese). [80] GIEPMAN R, SCHRIJER F, VAN OUDHEUSDEN B. High-resolution PIV measurements of a transitional shock wave-boundary layer interaction[J]. Experiments in Fluids, 2015, 56: 113. [81] GIEPMAN R H M, SCHRIJER F F J, VAN OUDHEUSDEN B W. A parametric study of laminar and transitional oblique shock wave reflections[J]. Journal of Fluid Mechanics, 2018, 844: 187-215. [82] DIOP M, PIPONNIAU S, DUPONT P. High resolution LDA measurements in transitional oblique shock wave boundary layer interaction[J]. Experiments in Fluids, 2019, 60: 57. [83] XIANG X, BABINSKY H. An experimental study of corner flow control applied to an oblique shock-wave/boundary-layer interaction: AIAA-2018-1532[R]. Reston: AIAA, 2018. [84] 董明, 赵慧勇. 超声速边界层中壁面抽吸对流动分离的抑制作用[J]. 气体物理, 2019, 4(2): 17-29. DONG M, ZHAO H Y. Suppression of flow separation by wall suction in supersonic boundary layers[J]. Physics of Gases, 2019, 4(2): 17-29(in Chinese). [85] 吴瀚, 王建宏, 黄伟, 等. 激波/边界层干扰及微型涡流发生器控制研究进展[J]. 航空学报, 2021, 42(6): 025371. WU H, WANG J H, HUANG W, et al. Research progress on shock wave/boundary layer interactions and flow controls induced by micro vortex generators[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(6): 025371(in Chinese). [86] ZHANG Y, TAN H J, TIAN F C, et al. Control of incident shock/boundary-layer interaction by a two-dimensional bump[J]. AIAA Journal, 2014, 52(4): 767-776. [87] 童福林, 孙东, 袁先旭, 等. 超声速膨胀角入射激波/湍流边界层干扰直接数值模拟[J]. 航空学报, 2020, 41(3): 123328. TONG F L, SUN D, YUAN X X, et al. Direct numerical simulation of impinging shock wave/turbulent boundary layer interactions in a supersonic expansion corner[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(3): 123328(in Chinese). [88] 童福林, 周桂宇, 孙东, 等. 膨胀效应对激波/湍流边界层干扰的影响[J]. 航空学报, 2020, 41(9): 123731. TONG F L, ZHOU G Y, SUN D, et al. Expansion effect on shock wave and turbulent boundary layer interactions[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(9): 123731(in Chinese). [89] DAUB D, WILLEMS S, GVLHAN A. Experiments on the interaction of a fast-moving shock with an elastic panel[J]. AIAA Journal, 2016, 54(2): 670-678. [90] WHALEN T J, SCHÖNEICH A G, LAURENCE S J, et al. Hypersonic fluid-structure interactions in compression corner shock-wave/boundary-layer interaction[J]. AIAA Journal, 2020, 58(9): 4090-4105. [91] GAN T, WU Y, SUN Z Z, et al. Shock wave boundary layer interaction controlled by surface arc plasma actuators[J]. Physics of Fluids, 2018, 30: 055107. [92] IWAKAWA A, SHODA T, PHAM H, et al. Suppression of low-frequency shock oscillations over boundary layers by repetitive laser pulse energy deposition[J]. Aerospace, 2016, 3(2): 13. [93] 蔡帮煌, 宋慧敏, 郭善广, 等. 射频放电等离子体激励对激波/边界层干扰的控制效果[J]. 浙江大学学报(工学版), 2020, 54(9): 1839-1848. CAI B H, SONG H M, GUO S G, et al. Control effect of radio frequency discharge plasma excitation on shock wave/boundary layer interference[J]. Journal of Zhejiang University(Engineering Science), 2020, 54(9): 1839-1848(in Chinese). |
[1] | Qi LIU, Yongjie SHI, Zhiyuan HU, Guohua XU. Parameter effects analysis on aerodynamic and aeroacoustic characteristics of coaxial rigid rotor [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(9): 528856-528856. |
[2] | Pengpeng SUN, Ping’an LIU, Feng FAN, Wei ZENG. Aerodynamic interaction characteristics of coaxial rigid rotor⁃fuselage in hover condition [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(9): 529284-529284. |
[3] | Xuehe WANG, Chunshuo CHAI, Shilong XING, Feng FAN, Shuilin HUANG. Design of coaxial high⁃speed helicopter airfoil in reverse flow region and its drag reduction mechanism [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(9): 529960-529960. |
[4] | Yurou DAI, Jian LI, Xiaopeng XUE, Wei RONG. Aerodynamic characteristics of supersonic disk-gap-band parachute with different reefing ways [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(7): 128811-128811. |
[5] | Wei XIE, Zhenbing LUO, Yan ZHOU, Qiang LIU, Jianjun WU, Hao DONG. Double wedge shock interaction control using steady jet in hypersonic flow: Experimental study [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(7): 128813-128813. |
[6] | Jinghui DENG. Technical status and development of electric vertical take⁃off and landing aircraft [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(5): 529937-529937. |
[7] | Hongbo WANG, Yu ZENG, Dapeng XIONG, Yixin YANG, Mingbo SUN. Improvement of shock wave and compressibility effects in SST turbulence model [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(3): 128694-128694. |
[8] | Jiang LAI, Zhaolin FAN, Qian WANG, Siwei DONG, Fulin TONG, Xianxu YUAN. Direct numerical simulation of hypersonic cone-flare model at angle of attack [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(2): 128610-128610. |
[9] | Wenqing YANG, Yueyang GUO, Yuanbo DONG, Dong XUE, Jianlin XUAN. Research progress on fluid structure interaction of bionic flexible flapping wing UAV [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(17): 530069-530069. |
[10] | Ke ZHAO, Jun DENG, Jiangtao HUANG, Shusheng CHEN, Zhenghong GAO. Aerodynamic optimization design of high and low speed integration for flying wing layout [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(15): 129367-129367. |
[11] | Yonghua LIU, Guohua XU, Yongjie SHI, Zhenyu DU, Huixin ZHANG, Zhiyuan HU. Effects of strong rotor wake vortex interference on helicopter airspeed measurement [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(14): 129536-129536. |
[12] | Weiqi WANG, Xi CHEN, Qijun ZHAO. Hovering helicopter rotor blade/vortex interaction noise characteristics in ground effect environment [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(12): 129196-129196. |
[13] | Kangshen XIANG, Weijie CHEN, Jianxin LIAN, Weiyang QIAO. Numerical analysis of effect of bend/lean stator on turbine tonal noise [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(10): 129366-129366. |
[14] | Fanyu ZENG, Yunlong QIU, Zhanwei CAO, Lun ZHANG, Weifang CHEN. Flow control and drag reduction characteristics of micro-blowing array on supersonic turbulent boundary layer [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(S2): 729396-729396. |
[15] | Yu ZENG, Hongbo WANG, Mingbo SUN, Chao WANG, Xu LIU. SST turbulence model improvements: Review [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(9): 27411-027411. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Address: No.238, Baiyan Buiding, Beisihuan Zhonglu Road, Haidian District, Beijing, China
Postal code : 100083
E-mail:hkxb@buaa.edu.cn
Total visits: 6658907 Today visits: 1341All copyright © editorial office of Chinese Journal of Aeronautics
All copyright © editorial office of Chinese Journal of Aeronautics
Total visits: 6658907 Today visits: 1341