Acta Aeronautica et Astronautica Sinica ›› 2023, Vol. 44 ›› Issue (S2): 729396-729396.doi: 10.7527/S1000-6893.2023.29396
• Near Space Technology • Previous Articles Next Articles
Fanyu ZENG1, Yunlong QIU2(), Zhanwei CAO3,4, Lun ZHANG1, Weifang CHEN1
Received:
2023-08-01
Revised:
2023-08-03
Accepted:
2023-08-18
Online:
2023-08-25
Published:
2023-08-24
Contact:
Yunlong QIU
E-mail:qyl1992@zju.edu.cn
Supported by:
CLC Number:
Fanyu ZENG, Yunlong QIU, Zhanwei CAO, Lun ZHANG, Weifang CHEN. Flow control and drag reduction characteristics of micro-blowing array on supersonic turbulent boundary layer[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(S2): 729396-729396.
1 | RICCO P, SKOTE M, LESCHZINER M A. A review of turbulent skin-friction drag reduction by near-wall transverse forcing[DB/OL]. arXiv preprint: 2103.04719, 2021 |
2 | KORNILOV V. Current state and prospects of researches on the control of turbulent boundary layer by air blowing[J]. Progress in Aerospace Sciences, 2015, 76: 1-23. |
3 | CORKE THOMAS C, THOMAS FLINT O. Active and passive turbulent boundary-layer drag reduction[J]. AIAA Journal, 2018, 56(10): 3835-3847. |
4 | WALSH M J. Riblets as a viscous drag reduction technique[J]. AIAA Journal, 2012, 21(4): 485-486. |
5 | LI W P. Turbulence statistics of flow over a drag-reducing and a drag-increasing riblet-mounted surface[J]. Aerospace Science and Technology, 2020, 104: 106003. |
6 | WANG L H, HUANG W X, XU C X, et al. Relationship between wall shear stresses and streamwise vortices[J]. Applied Mathematics and Mechanics, 2019, 40(3): 381-396. |
7 | FUKAGATA K, KERN S, CHATELAIN P, et al. Evolutionary optimization of an anisotropic compliant surface for turbulent friction drag reduction[J]. Journal of Turbulence, 2008, 9: N35. |
8 | YAO J E, CHEN X, HUSSAIN F. Drag control in wall-bounded turbulent flows via spanwise opposed wall-jet forcing[J]. Journal of Fluid Mechanics, 2018, 852: 678-709. |
9 | CHENG X Q, WONG C W, HUSSAIN F, et al. Flat plate drag reduction using plasma-generated streamwise vortices[J]. Journal of Fluid Mechanics, 2021, 918: A24. |
10 | 白建侠, 姜楠, 唐湛棋, 等. 双压电振子异步振动主动调制湍流边界层流向涡减阻[J]. 航空动力学报, 2019, 34(12): 2539-2548. |
BAI J X, JIANG N, TANG Z Q, et al. Active modulation to streamwise vortex drag reduction of turbulent boundary layer by asynchronous vibration with double piezoelectric vibrator[J]. Journal of Aerospace Power, 2019, 34(12): 2539-2548 (in Chinese). | |
11 | JI S C, ZHANG B, LI J A, et al. Numerical study for active flow control using dielectric barrier discharge actuators[J]. Journal of Aerospace Engineering, 2017, 30(5): 04017050. |
12 | KAMETANI Y, FUKAGATA K. Direct numerical simulation of spatially developing turbulent boundary layers with uniform blowing or suction[J]. Journal of Fluid Mechanics, 2011, 681: 154-172. |
13 | MA R, GAO Z H, LU L S, et al. Skin-friction drag reduction by local porous uniform blowing in spatially developing compressible turbulent boundary layers[J]. Physics of Fluids, 2022, 34: 125130. |
14 | LIU Q A, LUO Z B, WANG L, et al. Direct numerical simulations of supersonic turbulent boundary layer with streamwise-striped wall blowing[J]. Aerospace Science and Technology, 2021, 110: 106510. |
15 | KAMETANI Y, FUKAGATA K, ÖRLÜ R, et al. Drag reduction in spatially developing turbulent boundary layers by spatially intermittent blowing at constant mass-flux[J]. Journal of Turbulence, 2016, 17(10): 913-929. |
16 | Kim K, Sung H J. DNS of turbulent boundary layer with time-periodic blowing through a spanwise slot[C]∥Proceedings of the Asian Computational Fluid Dynamics Conference (5th). Busan, 2003: 835-842. |
17 | KIM K, SUNG H J. Effects of periodic blowing from spanwise slot on a turbulent boundary layer[J]. AIAA Journal, 2003, 41(10): 1916-1924. |
18 | KIM K, JIN SUNG H. Effects of unsteady blowing through a spanwise slot on a turbulent boundary layer[J]. Journal of Fluid Mechanics, 2006, 557: 423. |
19 | CHENG X Q, QIAO Z X, ZHANG X, et al. Skin-friction reduction using periodic blowing through streamwise slits[J]. Journal of Fluid Mechanics, 2021, 920: A50. |
20 | ZHANG X, WONG C W, CHENG X Q, et al. Dependence of skin-friction reduction on the geometric parameters of blowing jet array[J]. Physics of Fluids, 2022, 34(10): 105125. |
21 | HWANG D, BIESIADNY T. Experimental evaluation of penalty associated with micro-blowing for reducing skin friction[C]∥Proceedings of the 36th AIAA Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 1998: AIAA1998-677. |
22 | HWANG D. Review of research into the concept of the microblowing technique for turbulent skin friction reduction[J]. Progress in Aerospace Sciences, 2005, 40(8): 559-575. |
23 | HWANG D. An experimental study of turbulent skin friction reduction in supersonic flow using a microblowing technique[C]∥Proceedings of the 38th Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2000: AIAA2000-545. |
24 | KORNILOV V I, BOIKO A V. Efficiency of air microblowing through microperforated wall for flat plate drag reduction[J]. AIAA Journal, 2012, 50(3): 724-732. |
25 | 范云涛, 张阳, 叶志贤, 等. 微吹气对湍流平板边界层流动特性的影响及其减阻机理[J]. 航空学报, 2020, 41(10): 123814. |
FAN Y T, ZHANG Y, YE Z X, et al. Micro-blowing: Effect on flow characteristics in turbulent flat plate boundary layer and drag reduction mechanism[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(10): 123814 (in Chinese). | |
26 | PIROZZOLI S, GRASSO F, GATSKI T B. Direct numerical simulation and analysis of a spatially evolving supersonic turbulent boundary layer at M=2.25[J]. Physics of Fluids, 2004, 16(3): 530-545. |
27 | LI X L, FU D X, MA Y W, et al. Acoustic calculation for supersonic turbulent boundary layer flow[J]. Chinese Physics Letters, 2009, 26(9): 094701. |
28 | 傅德薰, 马延文, 李新亮. 可压缩湍流直接数值模拟[M]. 北京: 科学出版社, 2010. |
FU D X, MA Y W, LI X L. Direct numerical simulation of compressible turbulence[M]. Beijing: Science Press, 2010 (in Chinese). | |
29 | WHITE F M. Viscous fluid flow[M]. New York: McGraw-Hill, 1974. |
30 | WU X H, MOIN P. Transitional and turbulent boundary layer with heat transfer[J]. Physics of Fluids, 2010, 22(8): 085105. |
31 | Spalart P R. Direct simulation of a turbulent boundary layer up to Reθ =1410[J]. Journal Fluid Mechanics, 1988, 187: 61. |
32 | KAMETANI Y, KOTAKE A, FUKAGATA K, et al. Drag reduction capability of uniform blowing in supersonic wall-bounded turbulent flows[J]. Physical Review Fluids, 2017, 2(12): 123904. |
33 | CHOI H, MOIN P, KIM J. Active turbulence control for drag reduction in wall-bounded flows[J]. Journal of Fluid Mechanics, 1994, 262: 75-110. |
34 | XU C X, DENG B Q, HUANG W X, et al. Coherent structures in wall turbulence and mechanism for drag reduction control[J]. Science China Physics, Mechanics and Astronomy, 2013, 56(6): 1053-1061. |
35 | XU C. Coherent structures and drag-reduction mechanism in wall turbulence[J]. Advances in Mechanics, 2015, 45: 111-140. |
36 | JIMÉNEZ J, PINELLI A. The autonomous cycle of near-wall turbulence[J]. Journal of Fluid Mechanics, 1999, 389: 335-359. |
37 | LI W P, FAN Y T, MODESTI D, et al. Decomposition of the mean skin-friction drag in compressible turbulent channel flows[J]. Journal of Fluid Mechanics, 2019, 875: 101-123. |
[1] | Xuehe WANG, Chunshuo CHAI, Shilong XING, Feng FAN, Shuilin HUANG. Design of coaxial high⁃speed helicopter airfoil in reverse flow region and its drag reduction mechanism [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(9): 529960-529960. |
[2] | Guangjia LI, Hongbo WANG, Kai ZHANG, Zhisheng YI. Lift enhancement and drag reduction technologies of solar powered unmanned aerial vehicles in near space: Review [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(5): 529644-529644. |
[3] | Shiqi GAO, Bo DING, Xuzhen XIE, Zheng LI, Lin CHEN, Shouyuan QIAN, Zihan JIAO, Guanghui BAI. Drag reduction mechanism using plasma synthetic jet in high⁃speed flow [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(S2): 729373-729373. |
[4] | Rong HAN, Wei LIU, Xiaoliang YANG. Dynamic drag reduction mechanism of self-aligned aerodisks on hypersonic aircraft [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(4): 126633-126633. |
[5] | Pinpeng ZENG, Shusheng CHEN, Jinping LI, Muliang JIA, Zhenghong GAO. Numerical simulation of heat reduction on blunt-headed bodies by combined scheme of drag reduction spike and annular jets [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(22): 128407-128407. |
[6] | Yulin DING, Zhonghua HAN, Jianling QIAO, Han NIE, Wenping SONG, Bifeng SONG. Research progress in key technologies for conceptual-aerodynamic configuration design of supersonic transport aircraft [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(2): 626310-626310. |
[7] | Guangsheng ZHU, Shiyong YAO, Yi DUAN. Research progress and engineering application of flow control technology for drag and heat reduction of high-speed vehicles [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(15): 529049-529049. |
[8] | Junyang LI, Pengxin LIU, Ming YU, Dong SUN, Siwei DONG, Xianxu YUAN. Effects of viscous dissipation on wall heat flux in high-enthalpy turbulent boundary layer [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(15): 528963-528963. |
[9] | Xiaodong LIU, Pengxin LIU, Chen LI, Dong SUN, Xianxu YUAN. Direct numerical simulation of high enthalpy shock wave/turbulent boundary layer interaction [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(13): 127832-127832. |
[10] | Yating FENG, Hui ZHANG. Aerodynamic drag reduction device based on rear wind energy harvesting [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(S2): 180-191. |
[11] | Xudong ZHANG, Zheng LI, Hao DONG, Siyuan GAO, Zubi JI, Kaixin LI, Guanghui BAI. Drag reduction characteristics of opposing plasma synthetic jet in hypersonic flow [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(S2): 115-123. |
[12] | CHENG Jianrui, SHI Chongguang, QU Lixia, XU Yue, YOU Yancheng, ZHU Chengxiang. Theoretical model of 2D curved shock wave/turbulent boundary layer interaction [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(9): 125993-125993. |
[13] | LI Jun, WANG Junfeng, ZHAO Yatian, LUO Shibin. Research on combinational configuration of spike and multi-jets in off-design regimes [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(9): 125949-125949. |
[14] | HAN Luyang, WANG Bin, PU Liang, CHEN Qing, ZHENG Haibin. Research progress on mechanism and related problems of energy deposition drag reduction technology [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(9): 26032-026032. |
[15] | TONG Fulin, DONG Siwei, DUAN Junyi, LI Xinliang. Direct numerical simulation of separation bubble in shock wave/turbulent boundary layer interaction [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(7): 125437-125437. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Address: No.238, Baiyan Buiding, Beisihuan Zhonglu Road, Haidian District, Beijing, China
Postal code : 100083
E-mail:hkxb@buaa.edu.cn
Total visits: 6658907 Today visits: 1341All copyright © editorial office of Chinese Journal of Aeronautics
All copyright © editorial office of Chinese Journal of Aeronautics
Total visits: 6658907 Today visits: 1341