[1] 田正雨, 李桦, 范晓樯. 六类高超声速激波-激波干扰的数值模拟研究[J]. 空气动力学学报, 2004, 22(3): 361-364. TIAN Z Y, LI H, FAN X Q. Numerical investigation for six types of hypersonic turbulent shock-shock interaction[J]. Acta Aerodynamica Sinica, 2004, 22(3): 361-364(in Chinese). [2] MACH E. Uber den verlauf von funkenwellen in der ebene und im raume[J]. Sitzungsbr Akad Wiss Wien, 1878, 78: 819-838. MACH E. On the course of spark waves in the plane and in space[J]. Sitzungsbr Akad Wiss Wien, 1878, 78: 819-838(in German). [3] HOLGER B, JOHN K H. 激波边界层干扰[M]. 白菡尘, 译. 北京: 国防工业出版社, 2015: 5-71. HOLGER B, JOHN K H. Shock wave-boundary-layer interactions[M]. BAI H C, translated. Beijing: National Defense Industry Press, 2015: 5-71(in Chinese). [4] VON NEUMANN J. Oblique reflection of shock[J]. John von Neumann Collected Works, 1943, 6: 238-299. [5] VON NEUMANN J. Refraction, intersection and reflection of shock waves: NAVORD Report No.203-245[R]. Washington, D.C.: Navy Department, 1945. [6] BEN-DOR G, IVANOV M, VASILEV E I, et al. Hysteresis processes in the regular reflection?Mach reflection transition in steady flows[J]. Progress in Aerospace Sciences, 2002, 38(4-5): 347-387. [7] BEN-DOR G. Shock wave reflections in steady flows[M]//Shock Wave Reflection Phenomena. New York: Springer New York, 1992: 175-199. [8] CHPOUN A, PASSEREL D, LI H, et al. Reconsideration of oblique shock wave reflections in steady flows. Part 1. Experimental investigation[J]. Journal of Fluid Mechanics, 1995, 301: 19-35. [9] CHPOUN A, PASSEREL D, LENGRAND J C, et al. Mise en evidence experimental et numericale d’unphenomene d’hysteresis lors de la transition reflexion de Mach-reflexion reguliere[J]. Comptes Rendus de l Académie des Sciences-Series IIB-Mechanics, 1994, 319(12): 1447-1453. CHPOUN A, PASSEREL D, LENGRAND J C, et al. Experimental and numerical demonstration of a hysteresis phenomenon during the transition from Mach reflection to regular reflection[J]. Accounts of the Academy of Sciences-Series IIB-Mechanics, 1994, 319(12): 1447-1453(in French). [10] IVANOV M, ZEITOUN D, VUILLON J, et al. Investigation of the hysteresis phenomena in steady shock reflection using kinetic and continuum methods[J]. Shock Waves, 1996, 5(6): 341-346. [11] SHIROZU T, NISHIDA M. Numerical studies of oblique shock reflection in steady two dimensional flows[J]. Memoirs of the Faculty of Engineering KYUSHU University, 1995, 55(2): 193-204. [12] KUDRYAVTSEV A N, KHOTYANOVSKY D V, MARKELOV G N, et al. Numerical simulation of reflection of shock waves generated by finite-width wedge[C]//Proceedings of the 22nd International Symposium Shock Waves, Vol.2.Southampton: University of Southampton, 1999: 1185-1190. [13] IVANOV M S, BEN-DOR G, ELPERIN T, et al. Flow-Mach-number-variation-induced hysteresis in steady shock wave reflections[J]. AIAA Journal, 2001, 39(5): 972-974. [14] ONOFRI M, NASUTI F. Theoretical considerations on shock reflections and their implications on the evaluation of air intake performance[J]. Shock Waves, 2001, 11(2): 151-156. [15] ZHANG E L, LI Z F, LI Y M, et al. Three-dimensional shock interactions and vortices on a V-shaped blunt leading edge[J]. Physics of Fluids, 2019, 31(8): 086102. [16] 张恩来, 李祝飞, 杨基明. 三维激波反射理论与数值研究[C]//首届全国空气动力学大会论文集. 绵阳: 中国空气动力研究与发展中心, 2018: 1-7. ZHANG E L, LI Z F, YANG J M. Three-dimensional shock reflection theory and numerical research[C]//Proceedings of the First National Aerodynamics Conference. Mianyang: China Aerodynamics Research and Development Center, 2018: 1-7(in Chinese). [17] 张恩来. 高超声速内外流中的三维激波相互作用[D]. 合肥: 中国科学技术大学, 2019. ZHANG E L. Three-dimensional shock interactions inhypersonic internal/external integration flows[D]. Hefei: University of Science and Technology of China, 2019(in Chinese). [18] 谭廉华. 平面与轴对称定常激波马赫反射中的激波形状研究[D]. 北京: 清华大学, 2007. TAN L H. On the shape of shock waves in steady planar and axisymmetical Mach reflections[D]. Beijing: Tsinghua University, 2007(in Chinese). [19] TAN L H, REN Y X, WU Z N. Analytical and numerical study of the near flow field and shape of the Mach stem in steady flows[J]. Journal of Fluid Mechanics, 2006, 546: 341-362. [20] REN Y X, TAN L H, WU Z N. The shape of incident shock wave in steady axisymmetric conical Mach reflection[J]. Advances in Aerodynamics, 2020, 2(1): 474-484. [21] 傅德薰, 马延文. 计算流体力学[M]. 北京: 高等教育出版社, 2002. FU D X, MA Y W. Computational fluid dynamics[M]. Beijing: Higher Education Press, 2002(in Chinese). [22] STEGER J L, WARMING R F. Flux vector splitting of the inviscid gasdynamic equations with application to finite-difference methods[J]. Journal of Computational Physics, 1981, 40(2): 263-293. [23] TORO E F. Riemann solvers and numerical methods for fluid dynamics[M]//The Riemann Problem for the Euler Equations. Berlin: Springer, 1997: 115-157. [24] 黎作武. 近似黎曼解对高超声速气动热计算的影响研究[J]. 力学学报, 2008, 40(1): 19-25. LI Z W. Study on the dissipative effect of approximate Riemann solver on hypersonic heatflux simulation[J]. Chinese Journal of Theoretical and Applied Mechanics, 2008, 40(1): 19-25(in Chinese). [25] YOON S, JAMESON A. Lower-upper symmetric-Gauss-Seidel method for the Euler and Navier-Stokes equations[J]. AIAA Journal, 1988, 26(9): 1025-1026. |