Acta Aeronautica et Astronautica Sinica ›› 2024, Vol. 45 ›› Issue (3): 128694-128694.doi: 10.7527/S1000-6893.2023.28694
• Fluid Mechanics and Flight Mechanics • Previous Articles Next Articles
Hongbo WANG, Yu ZENG(), Dapeng XIONG, Yixin YANG, Mingbo SUN
Received:
2023-03-14
Revised:
2023-04-11
Accepted:
2023-05-07
Online:
2024-02-15
Published:
2023-05-12
Contact:
Yu ZENG
E-mail:whbwatch@nudt.edu.cn
Supported by:
CLC Number:
Hongbo WANG, Yu ZENG, Dapeng XIONG, Yixin YANG, Mingbo SUN. Improvement of shock wave and compressibility effects in SST turbulence model[J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(3): 128694-128694.
1 | MENTER F R. Two-equation eddy-viscosity turbulence models for engineering applications[J]. AIAA Journal, 1994, 32(8): 1598-1605. |
2 | 阎超. 航空CFD四十年的成就与困境[J]. 航空学报, 2022, 43(10): 526490. |
YAN C. Achievements and predicaments of CFD in aeronautics in past forty years[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(10): 526490 (in Chinese). | |
3 | URZAY J. Supersonic combustion in air-breathing propulsion systems for hypersonic flight[J]. Annual Review of Fluid Mechanics, 2018, 50: 593-627. |
4 | PENG Y P, BARZEGAR GERDROODBARY M, SHEIKHOLESLAMI M, et al. Mixing enhancement of the multi hydrogen fuel jets by the backward step[J]. Energy, 2020, 203: 117859. |
5 | 范孝华, 唐志共, 王刚, 等. 激波/湍流边界层干扰低频非定常性研究评述[J]. 航空学报, 2022, 43(1): 625917. |
FAN X H, TANG Z G, WANG G, et al. Review of low-frequency unsteadiness in shock wave/turbulent boundary layer interaction[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(1): 625917 (in Chinese). | |
6 | YORK W D, WALTERS D K, LEYLEK J H. A simple and robust linear eddy-viscosity formulation for curved and rotating flows[J]. International Journal of Numerical Methods for Heat & Fluid Flow, 2009, 19(6): 745-776. |
7 | AILLAUD P, GICQUEL L Y M, DUCHAINE F. Investigation of the concave curvature effect for an impinging jet flow[J]. Physical Review Fluids, 2017, 2(11): 114608. |
8 | HUANG X B, YANG W, LI Y J, et al. Review on the sensitization of turbulence models to rotation/curvature and the application to rotating machinery[J]. Applied Mathematics and Computation, 2019, 341: 46-69. |
9 | BRADSHAW P. Turbulence modeling with application to turbomachinery[J]. Progress in Aerospace Sciences, 1996, 32(6): 575-624. |
10 | TU G H, DENG X G, MAO M L. Assessment of two turbulence models and some compressibility corrections for hypersonic compression corners by high-order difference schemes[J]. Chinese Journal of Aeronautics, 2012, 25(1): 25-32. |
11 | 甘文彪, 周洲, 许晓平, 等. 基于改进SST模型的分离流动数值模拟[J]. 推进技术, 2013, 34(5): 595-602. |
GAN W B, ZHOU Z, XU X P, et al. Investigation on improving the capability of predicting separation in modified SST turbulence model[J]. Journal of Propulsion Technology, 2013, 34(5): 595-602 (in Chinese). | |
12 | PICKLES J D, METTU B R, SUBBAREDDY P K, et al. On the mean structure of sharp-fin-induced shock wave/turbulent boundary layer interactions over a cylindrical surface[J]. Journal of Fluid Mechanics, 2019, 865: 212-246. |
13 | GAITONDE D V. Progress in shock wave/boundary layer interactions[J]. Progress in Aerospace Sciences, 2015, 72: 80-99. |
14 | 童福林, 段俊亦, 周桂宇, 等. 激波/湍流边界层干扰压力脉动特性数值研究[J]. 力学学报, 2021, 53(7): 1829-1841. |
TONG F L, DUAN J Y, ZHOU G Y, et al. Statistical characteristics of pressure fluctuation in shock wave and turbulent boundary layer interaction[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(7): 1829-1841 (in Chinese). | |
15 | POPE S B. A more general effective-viscosity hypothesis[J]. Journal of Fluid Mechanics, 1975, 72(2): 331-340. |
16 | GATSKI T B, JONGEN T. Nonlinear eddy viscosity and algebraic stress models for solving complex turbulent flows[J]. Progress in Aerospace Sciences, 2000, 36(8): 655-682. |
17 | ENDO S, SUJISAKULVONG T, KUYA Y, et al. Laminar-turbulent transition modeling with a Reynolds stress model for anisotropic flow characteristics[C]∥AIAA SciTech 2020 Forum. Reston: AIAA, 2020. |
18 | BARROUILLET B, LAURENDEAU É, YANG H. Calibration of the transitional k⁃ω⁃γ-Reθt turbulence model[J]. AIAA Journal, 2022, 60(7): 4140-4148. |
19 | MANCEAU R, HANJALIĆ K. Elliptic blending model: A new near-wall Reynolds-stress turbulence closure[J]. Physics of Fluids, 2002, 14(2): 744-754. |
20 | BISWAS R, DURBIN P A, MEDIC G. Development of an elliptic blending lag k-ω [J]. International Journal of Heat and Fluid Flow, 2019, 76: 26-39. |
21 | SHANG W J, AGARWAL R K. Development and validation of an elliptic blending lag SST k⁃ω turbulence model[C]∥ Proceedings of the AIAA Aviation 2020 Forum. Reston: AIAA, 2020. |
22 | KAANDORP M L A, DWIGHT R P. Data-driven modelling of the Reynolds stress tensor using random forests with invariance[J]. Computers & Fluids, 2020, 202: 104497. |
23 | TAGHIZADEH S, WITHERDEN F D, GIRIMAJI S S. Turbulence closure modeling with data-driven techniques: Physical compatibility and consistency considerations[J]. New Journal of Physics, 2020, 22(9): 093023. |
24 | MENTER F, KUNTZ M, LANGTRY R. Ten years of industrial experience with the SST turbulence model[J]. Turbulence, Heat and Mass Transfer, 2003, 4(1): 625-632. |
25 | DURBIN P A. Some recent developments in turbulence closure modeling[J]. Annual Review of Fluid Mechanics, 2018, 50: 77-103. |
26 | 曾宇, 汪洪波, 孙明波, 等. SST湍流模型改进研究综述[J]. 航空学报, 2023, 44(9): 027411. |
ZENG Y, WANG H B, SUN M B, et al. SST turbulence model improvements: Review[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(9): 027411 (in Chinese). | |
27 | RAJE P, SINHA K. Anisotropic SST turbulence model for shock-boundary layer interaction[J]. Computers & Fluids, 2021, 228: 105072. |
28 | DUAN L, BEEKMAN I, MARTÍN M P. Direct numerical simulation of hypersonic turbulent boundary layers. Part 3. Effect of Mach number[J]. Journal of Fluid Mechanics, 2011, 672: 245-267. |
29 | SMITS A J, DUSSAUGE J P. Turbulent shear layers in supersonic flow[M]. 2nd ed. New York: Springer, 2006: 35-41. |
30 | 刘景源. SST湍流模型在高超声速绕流中的改进[J]. 航空学报, 2012, 33(12): 2192-2201. |
LIU J Y. An improved SST turbulence model for hypersonic flows[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(12): 2192-2201 (in Chinese). | |
31 | SARKAR S. The pressure⁃dilatation correlation in compressible flows[J]. Physics of Fluids A: Fluid Dynamics, 1992, 4(12): 2674-2682. |
32 | ZEMAN O. Dilatation dissipation: The concept and application in modeling compressible mixing layers[J]. Physics of Fluids A: Fluid Dynamics, 1990, 2(2): 178-188. |
33 | WILCOX D C. Dilatation-dissipation corrections for advanced turbulence models[J]. AIAA Journal, 1992, 30(11): 2639-2646. |
34 | BROWN J. Turbulence model validation for hypersonic flows[C]∥ Proceedings of the 8th AIAA/ASME Joint Thermophysics and Heat Transfer Conference. Reston: AIAA, 2002. |
35 | MA G W, SUN M B, ZHAO G Y, et al. Effect of injection scheme on asymmetric phenomenon in rectangular and circular scramjets[J]. Chinese Journal of Aeronautics, 2023, 36(1): 216-230. |
36 | LIU M J, SUN M B, ZHAO G Y, et al. Effect of combustion mode on thrust performance in a symmetrical tandem-cavity scramjet combustor[J]. Aerospace Science and Technology, 2022, 130: 107904. |
37 | ZHANG C, DUAN L A, CHOUDHARI M M. Direct numerical simulation database for supersonic and hypersonic turbulent boundary layers[J]. AIAA Journal, 2018, 56(11): 4297-4311. |
38 | RINGUETTE M J, BOOKEY P, WYCKHAM C, et al. Experimental study of a Mach 3 compression ramp interaction at Reθ = 2400[J]. AIAA Journal, 2009, 47(2): 373-385. |
39 | WU M, MARTIN M P. Direct numerical simulation of supersonic turbulent boundary layer over a compression ramp[J]. AIAA Journal, 2007, 45(4): 879-889. |
40 | HOLDEN M S, WADHAMS T P, MACLEAN M G. Measurements in regions of shock wave/turbulent boundary layer interaction from Mach 4 to 10 for open and “Blind” code evaluation/validation[C]∥ Proceedings of the 21st AIAA Computational Fluid Dynamics Conference. Reston: AIAA, 2013. |
41 | LIOU W W, HUANG G, SHIH T H. Turbulence model assessment for shock wave/turbulent boundary-layer interaction in transonic and supersonic flows[J]. Computers & Fluids, 2000, 29(3): 275-299. |
42 | MARVIN J, BROWN J L, GNOFFO P. Experimental database with baseline CFD solutions: 2-D and axisymmetric hypersonic shock-wave/turbulent-boundary-layer interactions: NASA/TM-2013-216604[R]. Washington, D.C.: NASA, 2013. |
43 | DI STEFANO M A, HOSDER S, BAURLE R A. Effect of turbulence model uncertainty on scramjet isolator flowfield analysis[J]. Journal of Propulsion and Power, 2020, 36(1): 109-122. |
44 | MIDDLETON T F, BALLA R, BAURLE R, et al. The NASA Langley isolator dynamics research LAB[C]∥ Proceedings of the 31st Airbreathing Joint Meeting, 2010. |
45 | BAURLE R, MIDDLETON T F, WILSON L G. Reynolds-averaged turbulence model assessment for a highly back-pressured isolator flowfield[C]∥ 33rd Airbreathing Propulsion Joint Subcommittee Meeting, 2012. |
46 | TIAN Y F, ZHU J J, SUN M B, et al. Enhancement of blowout limit in a Mach 2.92 cavity-based scramjet combustor by a gliding arc discharge[J]. Proceedings of the Combustion Institute, 2023, 39(4): 5697-5705. |
47 | STORCH A, BYNUM M, LIU J W, et al. Combustor operability and performance verification for HIFiRE flight 2[C]∥ Proceedings of the 17th AIAA International Space Planes and Hypersonic Systems and Technologies Conference. Reston: AIAA, 2011. |
48 | HASS N, CABELL K, STORCH A, et al. HIFiRE direct-connect rig (HDCR) phase I scramjet test results from the NASA Langley arc-heated scramjet test facility[C]∥ Proceedings of the 17th AIAA International Space Planes and Hypersonic Systems and Technologies Conference. Reston: AIAA, 2011. |
49 | JACKSON K, GRUBER M, BUCCELLATO S. HIFiRE flight 2 project overview and status update 2011[C]∥ Proceedings of the 17th AIAA International Space Planes and Hypersonic Systems and Technologies Conference. Reston: AIAA, 2011. |
50 | 王力军, 袁韦韦, 徐义俊, 等. 基于HIFiRE-2超燃发动机内流道的激波边界层干扰分析[J]. 航空发动机, 2020, 46(3): 14-19. |
WANG L J, YUAN W W, XU Y J, et al. Analysis of shock wave boundary layer interactions based on internal flowpath of HIFiRE-2 scramjet[J]. Aeroengine, 2020, 46(3): 14-19 (in Chinese). |
[1] | Rongwu SHI, Xinyu BAI, Yifeng TAN, Zhe ZHAO. Design of a force sensor for boom nozzle [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(7): 216-226. |
[2] | Jiang LAI, Zhaolin FAN, Qian WANG, Siwei DONG, Fulin TONG, Xianxu YUAN. Direct numerical simulation of hypersonic cone-flare model at angle of attack [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(2): 128610-128610. |
[3] | Kailing ZHANG, Siyi LI, Yi DUAN, Chao YAN. Uncertainty quantification of parameters in SST turbulence model for inlet simulation [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(S2): 729429-729429. |
[4] | Yu ZENG, Hongbo WANG, Mingbo SUN, Chao WANG, Xu LIU. SST turbulence model improvements: Review [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(9): 27411-027411. |
[5] | Yinkai MA, Zhufei LI, Qi HUANG, Jiming YANG. Wingtip vortex and its interaction with oblique shock wave in wide-speed range [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(7): 38-50. |
[6] | Weijia LIU, Yingkun LI, Xiong CHEN, Chunlei LI. Panel flutter characteristics on shock wave/boundary layer interaction based on fluid⁃structure coupling [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(6): 127085-127085. |
[7] | Wenjie WANG, Xu ZHAO, Long YANG, Haojun LI, Yue XIANG. Aerodynamic mechanism of strong ground effect on horizontal boost run cross velocity domain [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(21): 528247-528247. |
[8] | Jiahui SONG, Aiguo XU, Long MIAO, Yugan LIAO, Fuwen LIANG, Feng TIAN, Mingqing NIE, Ningfei WANG. Entropy increase characteristics of shock wave/plate laminar boundary layer interaction [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(21): 528520-528520. |
[9] | Mengge WANG, Xiaoming HE, Juanjuan WANG, Yue ZHANG, Kun WANG, Huijun TAN, Liugang LI. Shock wave/boundary layer interaction control method based on oscillating vortex generator [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(20): 128503-128503. |
[10] | Yahui SONG, Gaoyu FAN, Lixia QU, Yuelin ZHANG, Yue XU, Shuo HAN. Progress of aircraft sonic boom flight test measurement technology: Review [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(2): 626186-626186. |
[11] | Shanshan TIAN, Liang JIN, Zhaobo DU, Xiangyu ZHONG, Wei HUANG, Yuanyang LIU. Research progress of shock wave/boundary layer interaction controls induced by bump [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(18): 28411-028411. |
[12] | Guangsheng ZHU, Shiyong YAO, Yi DUAN. Research progress and engineering application of flow control technology for drag and heat reduction of high-speed vehicles [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(15): 529049-529049. |
[13] | Zhenbing LUO, Wei XIE, Xuzhen XIE, Yan ZHOU, Qiang LIU. Research progress of active flow control of shock wave and its interaction [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(15): 529002-529002. |
[14] | Tantao LIU, Ruiyu LI, Limin GAO, Lei ZHAO. Experimental data driven cascade flow field prediction based on data assimilation [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(14): 628201-628201. |
[15] | Xiaodong LIU, Pengxin LIU, Chen LI, Dong SUN, Xianxu YUAN. Direct numerical simulation of high enthalpy shock wave/turbulent boundary layer interaction [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(13): 127832-127832. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Address: No.238, Baiyan Buiding, Beisihuan Zhonglu Road, Haidian District, Beijing, China
Postal code : 100083
E-mail:hkxb@buaa.edu.cn
Total visits: 6658907 Today visits: 1341All copyright © editorial office of Chinese Journal of Aeronautics
All copyright © editorial office of Chinese Journal of Aeronautics
Total visits: 6658907 Today visits: 1341