[1] FERRI A. Experimental results with airfoils tested in the high-speed tunnel at Guidonia: NACA-TM-946[C]. Washington, D.C.: NACA, 1940. [2] DOLLING D S. Fifty years of shock-wave/boundary-layer interaction research: What next?[J]. AIAA Journal, 2001, 39(8): 1517-1531. [3] SETTLES G S, FITZPATRICK T J, BOGDONOFF S M. Detailed study of attached and separated compression corner flowfields in high Reynolds number supersonic flow[J]. AIAA Journal, 1979, 17(6): 579-585. [4] DOLLING D S, MURPHY M T. Unsteadiness of the separation shock wave structure in a supersonic compression ramp flowfield[J]. AIAA Journal, 1983, 21(12): 1628-1634. [5] DOLLING D S, OR C T. Unsteadiness of the shock wave structure in attached and separated compression ramp flows[J]. Experiments in Fluids, 1985, 3(1): 24-32. [6] BOOKEY P, WYCKHAM C, SMITS A, et al. New experimental data of STBLI at DNS/LES accessible Reynolds numbers: AIAA-2005-0309[R]. Reston: AIAA, 2005. [7] WU M, MARTÍN M P. Direct numerical simulation of supersonic turbulent boundary layer over a compression ramp[J]. AIAA Journal, 2007, 45(4): 879-889. [8] LI X L, FU D X, MA Y W, et al. Direct numerical simulation of shock/turbulent boundary layer interaction in a supersonic compression ramp[J]. Science China Physics, Mechanics and Astronomy, 2010, 53(9): 1651-1658. [9] TONG F L, TANG Z G, YU C P, et al. Numerical analysis of shock wave and supersonic turbulent boundary interaction between adiabatic and cold walls[J]. Journal of Turbulence, 2017, 18(6): 569-588. [10] TONG F L, YU C P, TANG Z G, et al. Numerical studies of shock wave interactions with a supersonic turbulent boundary layer in compression corner: Turning angle effects[J]. Computers & Fluids, 2017, 149: 56-69. [11] 童福林, 李欣, 于长平, 等. 高超声速激波湍流边界层干扰直接数值模拟研究[J]. 力学学报, 2018, 50(2): 197-208. TONG F L, LI X, YU C P, et al. Direct numerical simulation of hypersonic shock wave and turbulent boundary layer interactions[J]. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(2): 197-208(in Chinese). [12] LOGINOV M S, ADAMS N A, ZHELTOVODOV A A. Large-eddy simulation of shock-wave/turbulent-boundary-layer interaction[J]. Journal of Fluid Mechanics, 2006, 565: 135-169. [13] ZHELTOVODOV A A. Peculiarities of development and modeling possibilities of supersonic turbulent separated flows[M]//Separated Flows and Jets. Berlin, Heidelberg: Springer, 1991: 225-236. [14] GRILLI M, HICKEL S, ADAMS N A. Large-eddy simulation of a supersonic turbulent boundary layer over a compression-expansion ramp[J]. International Journal of Heat and Fluid Flow, 2013, 42: 79-93. [15] FANG J, YAO Y F, ZHELTOVODOV A A, et al. Direct numerical simulation of supersonic turbulent flows around a tandem expansion-compression corner[J]. Physics of Fluids, 2015, 27(12): 125104. [16] RITOS K, DRIKAKIS D, KOKKINAKIS I W, et al. Computational aeroacoustics beneath high speed transitional and turbulent boundary layers[J]. Computers & Fluids, 2020, 203: 104520. [17] FUKAGATA K, IWAMOTO K, KASAGI N. Contribution of Reynolds stress distribution to the skin friction in wall-bounded flows[J]. Physics of Fluids, 2002, 14(11): L73-L76. [18] RENARD N, DECK S. A theoretical decomposition of mean skin friction generation into physical phenomena across the boundary layer[J]. Journal of Fluid Mechanics, 2016, 790: 339-367. [19] LI W P, FAN Y T, MODESTI D, et al. Decomposition of the mean skin-friction drag in compressible turbulent channel flows[J]. Journal of Fluid Mechanics, 2019, 875: 101-123. [20] MARTÍN M P, TAYLOR E M, WU M, et al. A bandwidth-optimized WENO scheme for the effective direct numerical simulation of compressible turbulence[J]. Journal of Computational Physics, 2006, 220(1): 270-289. [21] POGGIE J, BISEK N J, GOSSE R. Resolution effects in compressible, turbulent boundary layer simulations[J]. Computers & Fluids, 2015, 120: 57-69. [22] PIROZZOLI S, GRASSO F, GATSKI T B. Direct numerical simulation and analysis of a spatially evolving supersonic turbulent boundary layer at M=2.25[J]. Physics of Fluids, 2004, 16(3): 530-545. [23] WU X H, MOIN P. Direct numerical simulation of turbulence in a nominally zero-pressure-gradient flat-plate boundary layer[J]. Journal of Fluid Mechanics, 2009, 630: 5-41. [24] PIROZZOLI S, BERNARDINI M. Turbulence in supersonic boundary layers at moderate Reynolds number[J]. Journal of Fluid Mechanics, 2011, 688: 120-168. [25] JEONG J, HUSSAIN F. On the identification of a vortex[J]. Journal of Fluid Mechanics, 1995, 285: 69-94. [26] PIROZZOLI S, GRASSO F. Direct numerical simulation of impinging shock wave/turbulent boundary layer interaction at M=2.25[J]. Physics of Fluids, 2006, 18(6): 065113. [27] TERAMOTO S, SANADA H, OKAMOTO K. Dilatation effect in relaminarization of an accelerating supersonic turbulent boundary layer[J]. AIAA Journal, 2017, 55(4): 1469-1474. [28] FAN Y T, LI W P, PIROZZOLI S. Decomposition of the mean friction drag in zero-pressure-gradient turbulent boundary layers[J]. Physics of Fluids, 2019, 31(8): 086105. [29] NARASIMHA R, VISWANATH P R. Reverse transition at an expansion corner in supersonic flow[J]. AIAA Journal, 1975, 13(5): 693-695. |