Acta Aeronautica et Astronautica Sinica ›› 2024, Vol. 45 ›› Issue (7): 128811-128811.doi: 10.7527/S1000-6893.2023.28811
• Fluid Mechanics and Flight Mechanics • Previous Articles Next Articles
Yurou DAI1,2, Jian LI1,2(), Xiaopeng XUE3, Wei RONG1,2
Received:
2023-04-04
Revised:
2023-06-11
Accepted:
2023-07-05
Online:
2024-04-15
Published:
2023-07-14
Contact:
Jian LI
E-mail:lijian_bbmouth@163.com
Supported by:
CLC Number:
Yurou DAI, Jian LI, Xiaopeng XUE, Wei RONG. Aerodynamic characteristics of supersonic disk-gap-band parachute with different reefing ways[J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(7): 128811-128811.
Table 6
Projected area and its ratio of parachute at different positions
参数 | 不收口降落伞 | 带收口降落伞 | |||
---|---|---|---|---|---|
30%收口比 | 35%收口比 | 40%收口比 | |||
投影面积半径/m | N1点位 | 0.172 9 | 0.164 1 | 0.166 8 | 0.167 6 |
N2点位 | 0.192 3 | 0.169 9 | 0.174 4 | 0.179 5 | |
N3点位 | 0.206 3 | 0.164 4 | 0.173 6 | 0.181 0 | |
N4点位 | 0.223 2 | 0.148 5 | 0.162 9 | 0.178 0 | |
N5点位 | 0.233 6 | 收口绳位 | 收口绳位 | 收口绳位 | |
与名义直径的比值/% | N1点位 | 42.54 | 40.37 | 41.04 | 41.22 |
N2点位 | 47.31 | 41.79 | 42.91 | 44.15 | |
N3点位 | 50.76 | 40.43 | 42.70 | 44.52 | |
N4点位 | 54.91 | 36.55 | 40.07 | 43.78 | |
N5点位 | 57.46 |
1 | 《降落伞技术导论》编写组. 降落伞技术导论[M]. 北京:国防工业出版社, 1977: 113-117. |
“Introduction to Parachute Technology” Writing Group. Introduction to parachute technology[M].Beijing: National Defense Industry Press, 1977: 113-117 (in Chinese). | |
2 | WITKOWSKI A, BRUNO R. Mars exploration rover parachute decelerator system program overview[C]∥Proceedings of the 17th AIAA Aerodynamic Decelerator Systems Technology Conference and Seminar. Reston: AIAA, 2003. |
3 | ADAMS D S, WITKOWSKI A, KANDIS M. Phoenix Mars Scout parachute flight behavior and observations[C]∥2011 IEEE Aerospace Conference. Piscataway: IEEE Press, 2011: 1-8. |
4 | CRUZ J R, WAY D W, SHIDNER J D, et al. Reconstruction of the Mars science laboratory parachute performance[J]. Journal of Spacecraft and Rockets, 2014, 51(4): 1185-1196. |
5 | STEINBERG S Y, SIEMERS P M III, SLAYMAN R G. Velopment of the Viking parachute configuration by wind-tunnel investigation[J]. Journal of Spacecraft and Rockets, 1974, 11(2): 101-107. |
6 | 李健, 房冠辉, 吕智慧, 等. 天问一号火星探测器伞系减速分系统设计与验证[J]. 中国科学: 技术科学, 2022, 52(2): 264-277. |
LI J, FANG G H, LÜ Z H, et al. Design and verification of parachute deceleration subsystem of Tianwen-1 Mars probe[J]. Scientia Sinica (Technologica), 2022, 52(2): 264-277 (in Chinese). | |
7 | 荣伟, 高树义, 李健, 等. 神舟飞船降落伞系统减速策略及其可靠性验证[J]. 中国科学: 技术科学, 2014, 44(3): 251-260. |
RONG W, GAO S Y, LI J, et al. The deceleration strategy and reliability validation of the parachute system on the Shenzhou spacecraft[J]. Scientia Sinica (Technologica), 2014, 44(3): 251-260 (in Chinese). | |
8 | PREISSER J S, GROW R B. High-altitude flight test of a reefed 12.2-meter-diameter disk-gap-band parachute with deployment at a Mach number of 2.58[R]. Washington, D.C.: NASA, 1971. |
9 | ECKSTROM C, BRANSCOME D R. High altitude flight test of a disk gap band parachute deployed behind a bluff body at a Mach number of 2.69[R]. Washington, D.C.: NASA, 1973. |
10 | WITKOWSKI A, KANDIS M. Reefing the Mars Science Laboratory parachute[C]∥2010 IEEE Aerospace Conference. Piscataway: IEEE Press, 2010: 1-6. |
11 | WITKOWSKI A, KANDIS M, REUTER J, et al. Design of subscale parachute models for MSL supersonic wind tunnel testing[C]∥Proceedings of the 20th AIAA Aerodynamic Decelerator Systems Technology Conference and Seminar. Reston: AIAA, 2009. |
12 | 贾贺, 荣伟. ExoMars 2016火星探测计划进入、减速、着陆的验证任务分析[J]. 航天器工程, 2013, 22(4): 109-115. |
JIA H, RONG W. Review and analysis of EDL demonstrator module of ExoMars 2016 mission[J]. Spacecraft Engineering, 2013, 22(4): 109-115 (in Chinese). | |
13 | 余莉. 气动减速技术[M]. 北京: 科学出版社, 2018. |
YU L. Aerodynamic deceleration technology[M]. Beijing: Science Press, 2018 (in Chinese). | |
14 | 夏元清. 火星探测器进入、下降与着陆过程的导航、制导与控制—“恐怖”七分钟[M]. 北京: 科学出版社, 2017:34-38. |
XIA Y Q. Navigation, guidance and control of Mars rover entry, descent and landing—seven minutes of terror[M]. Beijing: Science Press, 2017:34-38 (in Chinese). | |
15 | HALL N. Mars atmosphere model[EB/OL]. (2021-05-13)[2021-07-27]. . |
16 | 刘凯欣, 王景焘, 王刚, 等. 时-空守恒元解元(CE/SE)方法综述[J]. 力学进展, 2011, 41(4): 447-461. |
LIU K X, WANG J T, WANG G, et al. A review on the CE/SE method[J]. Advances in Mechanics, 2011, 41(4): 447-461 (in Chinese). | |
17 | CHANG S C. The method of space-time conservation element and solution element—a new approach for solving the Navier-Stokes and Euler equations[J]. Journal of Computational Physics, 1995, 119(2): 295-324. |
18 | CHANG S C, WANG X Y, CHOW C Y. The space-time conservation element and solution element method: A new high-resolution and genuinely multidimensional paradigm for solving conservation laws[J]. Journal of Computational Physics, 1999, 156(1): 89-136. |
19 | 刘海涛, 徐建中. 求解Euler方程的空间—时间守恒格式[J]. 工程热物理学报, 1997, 18(3): 294-299. |
LIU H T, XU J Z. A space-time conservation scheme for solving the two-dimensional Euler equations[J]. Journal of Engineering Thermophysics, 1997, 18(3): 294-299 (in Chinese). | |
20 | 张德良, 谢巍, 郭长铭, 等. 气相爆轰胞格结构和马赫反射数值模拟[J]. 爆炸与冲击, 2001, 21(3): 161-167. |
ZHANG D L, XIE W, GUO C M, et al. Numerical simulation of cellar structures and Mach reflection of gaseous detonation waves[J]. Explosion and Shock Waves, 2001, 21(3): 161-167 (in Chinese). | |
21 | 张增产, 沈孟育. 改进的时空守恒元和解元方法[J]. 清华大学学报(自然科学版), 1997, 37(8): 67-70. |
ZHANG Z C, SHEN M Y. Improved space-time conservation element and solution element method[J]. Journal of Tsinghua University (Science and Technology), 1997, 37(8): 67-70 (in Chinese). | |
22 | 辛春亮, 朱星宇, 王凯, 等. LS-DYNA有限元建模、分析和优化设计[M]. 北京: 清华大学出版社, 2022. |
XIN C L, ZHU X Y, WANG K, et al. LS-DYNA finite element modeling, analysis and optimization design[M]. Beijing: Tsinghua University Press, 2022 (in Chinese). | |
23 | SOTIROPOULOS F, YANG X L. Immersed boundary methods for simulating fluid-structure interaction[J]. Progress in Aerospace Sciences, 2014, 65: 1-21. |
24 | 杨璐瑜, 张红英, 陆伟伟, 等. 盘缝带伞超声速开伞过程研究[J]. 航天返回与遥感, 2016, 37(3): 29-38. |
YANG L Y, ZHANG H Y, LU W W, et al. Study on the deployment of disk-gap-band parachute in supersonic flow[J]. Spacecraft Recovery & Remote Sensing, 2016, 37(3): 29-38 (in Chinese). | |
25 | 杨璐瑜, 陆伟伟, 张红英, 等. 速度对火星用盘缝带伞超声速开伞性能影响[J]. 航空计算技术, 2016, 46(5): 34-37. |
YANG L Y, LU W W, ZHANG H Y, et al. Effect of velocity on performance of Mars disk-gap-band parachutes in supersonic flow[J]. Aeronautical Computing Technique, 2016, 46(5): 34-37 (in Chinese). | |
26 | 王祁, 曹义华. 盘-缝-带伞超声速充气过程仿真研究[J]. 航天返回与遥感, 2018, 39(1): 35-44. |
WANG Q, CAO Y H. Study on the simulation of the inflating process of disk-gap-band parachute in supersonic flow[J]. Spacecraft Recovery & Remote Sensing, 2018, 39(1): 35-44 (in Chinese). | |
27 | ADAMS D, RIVELLINI T. Mars science laboratory’s parachute qualification Approach[C]∥20th AIAA Aerodynamic Decelerator Systems Technology Conference and Seminar. Reston: AIAA, 2009. |
28 | SONNEVELDT B S, CLARK I G, O’FARRELL C. Summary of the advanced supersonic parachute inflation research experiments (ASPIRE) sounding rocket tests with a disk-gap-band parachute[C]∥Proceedings of the AIAA Aviation 2019 Forum. Reston: AIAA, 2019. |
29 | CLINTON V E, JOHN S P. Flight test of a 40 foot nominal diameter disk-gap-band parachute deployed at a Mach number of 2.72 and a dynamic pressure of 9.7 pounds per square foot[R]. Washington, D.C.: NASA, 1968. |
[1] | Dazhi SUN, Xi CHEN, Weicheng BAO, Wei BIAN, Qijun ZHAO. Interferences of high-speed helicopter fuselage on aerodynamic and aeroacoustic source characteristics of propeller [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(9): 529142-529142. |
[2] | Siyuan CHANG, Yao XIAO, Guangli LI, Zhongwei TIAN, Kaikai ZHANG, Kai CUI. Effect of wing dihedral and anhedral angles on hypersonic aerodynamic characteristics of high-pressure capturing wing configuration [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(8): 127349-127349. |
[3] | Wenlong BAO, He JIA, Xiaopeng XUE, Xuejiao HUANG, Shuyi GAO, Wei RONG, Qi WANG, Zhuangzhi WU. Influence of ‘windows’ structure on inflation process of ringsail parachute [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(5): 226936-226936. |
[4] | Lei HE, Weiqi QIAN, Kangsheng DONG, Xian YI, Congcong CHAI. Aerodynamic characteristics modeling of iced airfoil based on convolution neural networks [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(5): 126434-126434. |
[5] | Chang LIU, Yunlong ZHANG, Zhijiang YAN, Lei ZHAO, Chen JI. Wind tunnel test of fluctuating pressure on aeroelastic scaled model of hammerhead launch vehicle [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(23): 128384-128384. |
[6] | Jianqiao LUO, Chunlei XIE, Zehua JIN, Junhui MENG. Water-skipping fluid-structure interaction simulation and slippable area study of trans-medium vehicle [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(21): 528632-528632. |
[7] | Qiulin LI, Li ZHOU, Peng SUN, Jingwei SHI, Zhanxue WANG. Influence mechanism of aspect ratio on fluid-structure interaction characteristics of serpentine nozzle [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(14): 628204-628204. |
[8] | ZHOU Wei, MA Peiyang, GUO Zheng, WANG Daoping, ZHOU Ruisun. Research of combined fixed-wing UAV based on wingtip chained [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(9): 325946-325946. |
[9] | AN Liping, WANG Hao, WANG Yangang, ZHU Zihuan. Wet compression performance and flow characteristics of transonic compressor [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(9): 126024-126024. |
[10] | WU Qiang, XU Haojun, WEI Yang, PEI Binbin, XUE Yuan. Aerodynamics/flight dynamics coupling characteristics of aircraft under icing conditions [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(8): 125566-125566. |
[11] | XU Xin, JIA He, CHEN Yaqian, RONG Wei, JIANG Wei, XUE Xiaopeng. Influence mechanism of fabric permeability of canopy on aerodynamic performance of Mars parachute [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(12): 126289-126289. |
[12] | JIA Hongyin, ZHANG Peihong, ZHAO Wei, ZHOU Guiyu, WU Xiaojun. Aerodynamic characteristics of vertical recovery of rocket sub-stage and influence of engine nozzle [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2021, 42(2): 623995-623995. |
[13] | ZHANG Yujia, ZUO Guang, XU Yizhe, DU Ruofan, ZHAO Fei, QU Feng. Numerical simulation on aerodynamic characteristics of new type control surface of Starship [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2021, 42(2): 624058-624058. |
[14] | LI Jin, GENG Xiangren, CHEN Jianqiang, JIANG Dingwu, LI Hongzhe. Application of DSMC quantum kinetic model in re-entry flow of Mars [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2020, 41(7): 123240-123240. |
[15] | ZHAO Zhenshan, FENG Jian, MIAO Shuming, DU Yu. Blended-wing-body aircraft overhanging engine layout technology based on numerical simulation [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2019, 40(9): 623051-623051. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Address: No.238, Baiyan Buiding, Beisihuan Zhonglu Road, Haidian District, Beijing, China
Postal code : 100083
E-mail:hkxb@buaa.edu.cn
Total visits: 6658907 Today visits: 1341All copyright © editorial office of Chinese Journal of Aeronautics
All copyright © editorial office of Chinese Journal of Aeronautics
Total visits: 6658907 Today visits: 1341