[1] DAVID A. Gravity measurement:Amazing GRACE[J]. Nature, 2002, 416(6876):10-11.[2] MASSONNET D, ROSSI M, CARMONA C, et al. The displacement field of the landers earthquake mapped by radar interferometry[J]. Nature, 1993, 364:138-142.[3] TAPLEY B D, BETTADPUR S, RIES J C, et al. GRACE measurements of mass variability in the earth system[J]. Science, 2004, 305(5683):503-505.[4] MOREIRA A, KRIEGER G, HAJNSEK I, et al. TanDEM-X:A terraSAR-X add-on satellite for single-pass SAR interferometry[C]//2004 IEEE International Geoscience and Remote Sensing Symposium. Piscataway, NJ:IEEE Press, 2004:1000-1003.[5] ANTHES R A, BERNHARDT P A, CHEN Y, et al. The COSMIC/FORMOSAT-3 mission:Early results[J]. Bulletin of the American Meteorological Society, 2008, 89(3):313-333.[6] AMICO S D, ARDAENS J S, FLORIO S D. Autonomous formation flying based on GPS-PRISMA flight results[J]. Acta Astronautica, 2013, 82(1):69-79.[7] CHEN P, SHU L Z, DING R, et al. Kinematic single-frequency relative positioning for LEO formation flying mission[J]. GPS Solutions, 2015, 19(4):525-535.[8] 谷德峰. 分布式InSAR卫星系统空间状态的测量与估计[D]. 长沙:国防科学技术大学, 2009:89-114. GU D F. The spatial states measurement and estimation of distributed InSAR satellite system[D]. Changsha:National University of Defense Technology, 2009:89-114(in Chinese).[9] MONTENBRUCK O, WERMUTH M, KAHLE R. GPS based relative navigation for the TanDEM-X mission-first flight results[J]. Navigation, 2011, 58(4):293-304.[10] ANTONY J W, GONZALEZ J H, SCHWERDT M, et al. Results of the TanDEM-X baseline calibration[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2013, 6(3):1495-1501.[11] KROES R. Precise relative positioning of formation flying spacecraft using GPS[D]. Netherlands:Delft University of Technology, 2006:79-135.[12] KROES R, MONTENBRUCK O, BERTIGER W, et al. Precise GRACE baseline determination using GPS[J]. GPS Solutions, 2005, 9(1):21-31.[13] JÄGGI A, HUGENTOBLER U, BOCK H, et al. Precise orbit determination for GRACE using undifferenced or doubly differenced GPS data[J]. Advances in Space Research, 2007, 39(10):1612-1619.[14] YOON Y, MONTENBRUCK O, KIRSCHNER M. Precise maneuver calibration for remote sensing satellites[C]//19th International Symposium on Space Flight Dynamics, 2006.[15] JU B, GU D F, HERRING T A, et al. Precise orbit and baseline determination for maneuvering low earth orbiters[J]. GPS Solutions, 2015, 21(1):1-12.[16] ALLENDE-ALBA G, MONTENBRUCK O. Robust and precise baseline determination of distributed spacecraft in LEO[J]. Advances in Space Research, 2015, 57(1):46-63.[17] JÄGGI A, MONTENBRUCK O, MOON Y, et al. Inter-agency comparison of TanDEM-X baseline solutions[J]. Advances in Space Research, 2012, 50(2):260-271.[18] LIU J H, GU D F, JU B, et al. Basic performance of BeiDou-2 navigation satellite system used in LEO satellites precise orbit determination[J]. Chinese Journal of Aeronautics, 2014, 27(5):1251-1258.[19] 秦显平. 星载GPS低轨卫星定轨理论及方法研究[D]. 郑州:解放军信息工程大学, 2009:125-135. QIN X P. Research on precision orbit determination theory and method of low earth orbiter based on GPS technique[J]. Zhengzhou:PLA Information Engineering University, 2009:125-135(in Chinese).[20] MAO X, VISSER P N A M, VAN DEN IJSSEL J. Impact of GPS antenna phase center and code residual variation maps on orbit and baseline determination of GRACE[J]. Advances in Space Research, 2017, 59(12):2987-3002.[21] GU D F, JU B, LIU J H, et al. Enhanced GPS-based GRACE baseline determination by using a new strategy for ambiguity resolution and relative phase center variation corrections[J]. Acta Astronautica, 2017, 138:176-184.[22] WERMUTH M, MONTENBRUCK O, WENDLEDER A. Relative navigation for the TanDEM-X mission and evaluation with DEM calibration results[C]//22nd International Symposium on Spaceflight Dynamics, 2011. |