Acta Aeronautica et Astronautica Sinica ›› 2023, Vol. 44 ›› Issue (21): 528259-528259.doi: 10.7527/S1000-6893.2023.28259
• Articles • Previous Articles Next Articles
Yufei WU1, Teng LONG1,2(), Renhe SHI1,2, Yao ZHANG1
Received:
2022-11-14
Revised:
2022-12-07
Accepted:
2023-01-09
Online:
2023-11-15
Published:
2023-01-12
Contact:
Teng LONG
E-mail:tenglong@bit.edu.cn
Supported by:
CLC Number:
Yufei WU, Teng LONG, Renhe SHI, Yao ZHANG. Non⁃hierarchical multi⁃model fusion order reduction based on aerodynamic and aerothermodynamic characteristics for cross⁃domain morphing aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(21): 528259-528259.
Table 6
Approximation performance comparison of non⁃hierarchical multi⁃fidelity models
问题 | 指标 | NMF-MKQP | VWS-MFS | VWS-HK | LR-MFS | MLMF-CK |
---|---|---|---|---|---|---|
1 | MAE | 1.862×10-6 | 0.214 | 1.017 | 2.865 | 1.825 |
RMSE | 1.951×10-7 | 0.051 | 0.349 | 0.855 | 1.269 | |
2 | MAE | 0.210 | 0.499 | 0.547 | 1.092 | 6.353 |
RMSE | 0.026 | 0.079 | 0.088 | 0.209 | 1.311 | |
3 | MAE | 2.113×103 | 1.618×104 | 3.770×104 | 1.229×105 | 9.596×104 |
RMSE | 2.229×102 | 2.804×103 | 4.734×103 | 2.898×104 | 2.127×104 | |
4 | MAE | 0.607 | 1.017 | 2.722 | 7.566 | 10.310 |
RMSE | 0.064 | 0.207 | 0.390 | 1.684 | 2.148 | |
5 | MAE | 595.65 | 626.430 | 716.89 | 850.15 | 5.388×103 |
RMSE | 55.850 | 59.830 | 72.502 | 88.230 | 201.104 | |
6 | MAE | 6.912×107 | 8.511×107 | 3.299×108 | 6.728×109 | 5.728×1011 |
RMSE | 6.546×106 | 7.932×106 | 2.758×107 | 9.310×107 | 7.272×1010 |
Table 8
Approximation accuracy and computation cost of initial scheme with aerodynamic and aerothermodynamic characteristics
类别 | 指标 | NMF-MKQP | MLK | CK⁃Ⅰ | CK-Ⅱ |
---|---|---|---|---|---|
MAE/10-3 | 1.877 | 1.871 | 2.929 | 2.921 | |
RMSE | 4.788×10-6 | 4.788×10-6 | 7.333×10-4 | 7.387×10-4 | |
耗时/s | 3.452 | 11.436 | 2.736 | 2.795 | |
MAE | 1.101×10-4 | 1.096×10-4 | 1.273×10-3 | 1.189×10-3 | |
RMSE | 4.967×10-8 | 4.971×10-8 | 2.588×10-4 | 2.626×10-4 | |
耗时/s | 3.312 | 9.918 | 2.946 | 2.790 | |
qmax | MAE/105 | 2.299 | 2.960 | 4.529 | 3.929 |
RMSE/105 | 1.276 | 1.667 | 1.764 | 1.582 | |
耗时/s | 3.651 | 11.294 | 2.863 | 2.844 |
1 | 白鹏, 陈钱, 徐国武, 等. 智能可变形飞行器关键技术发展现状及展望[J]. 空气动力学学报, 2019, 37(3): 426-443. |
BAI P, CHEN Q, XU G W, et al. Development status of key technologies and expectation about smart morphing aircraft[J]. Acta Aerodynamica Sinica, 2019, 37(3): 426-443 (in Chinese). | |
2 | AJAJ R M, PARANCHEERIVILAKKATHIL M S, AMOOZGAR M, et al. Recent developments in the aeroelasticity of morphing aircraft[J]. Progress in Aerospace Sciences, 2021, 120: 100682. |
3 | PHOENIX A A, MAXWELL J R, ROGERS R E. Mach 5-3.5 morphing waverider accuracy and aerodynamic performance evaluation[J]. Journal of Aircraft, 2019, 56(5): 2047-2061. |
4 | 彭悟宇, 杨涛, 涂建秋, 等. 高超声速变形飞行器翼面变形模式分析[J]. 国防科技大学学报, 2018, 40(3): 15-21. |
PENG W Y, YANG T, TU J Q, et al. Analysis on wing deformation modes of hypersonic morphing aircraft[J]. Journal of National University of Defense Technology, 2018, 40(3): 15-21 (in Chinese). | |
5 | 阎超. 航空CFD四十年的成就与困境[J]. 航空学报, 2022, 43(10): 526490. |
YAN C. Achievements and predicaments of CFD in aeronautics in past forty years[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(10): 526490 (in Chinese). | |
6 | 张斌. 基于自由变形和代理优化的飞行器气动外形优化设计研究[D]. 长沙: 国防科技大学, 2019. |
ZHANG B. Research on aerodynamic shape optimization design of vehicle based on free form deformation and surrogate-based optimization[D]. Changsha: National University of Defense Technology, 2019 (in Chinese). | |
7 | DREYER E R, GRIER B J, MCNAMARA J J, et al. Rapid steady-state hypersonic aerothermodynamic loads prediction using reduced fidelity models[J]. Journal of Aircraft, 2021, 58(3): 663-676. |
8 | 张伟伟, 寇家庆, 刘溢浪. 智能赋能流体力学展望[J]. 航空学报, 2021, 42(4): 524689. |
ZHANG W W, KOU J Q, LIU Y L. Prospect of artificial intelligence empowered fluid mechanics[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(4): 524689 (in Chinese). | |
9 | LAM R, ALLAIRE D L, WILLCOX K E. Multifidelity optimization using statistical surrogate modeling for non-hierarchical information sources[C]∥ 56 th AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston: AIAA, 2015: 0143. |
10 | XIAO M Y, ZHANG G H, BREITKOPF P, et al. Extended Co-Kriging interpolation method based on multi-fidelity data[J]. Applied Mathematics and Computation, 2018, 323: 120-131. |
11 | CHENG M, JIANG P, HU J X, et al. A multi-fidelity surrogate modeling method based on variance-weighted sum for the fusion of multiple non-hierarchical low-fidelity data[J]. Structural and Multidisciplinary Optimization, 2021, 64(6): 3797-3818. |
12 | ZHANG T T, WANG Z G, HUANG W, et al. Parameterization and optimization of hypersonic-gliding vehicle configurations during conceptual design[J]. Aerospace Science and Technology, 2016, 58: 225-234. |
13 | 李铭琦. 基于热流固多场耦合分析的剪切式滑动蒙皮变后掠翼设计与优化[D]. 哈尔滨: 哈尔滨工业大学, 2021. |
LI M Q. Design and optimization of a shear sliding skin variable sweep wing based on thermal-fluid-solid multi-field coupling analysis[D]. Harbin: Harbin Institute of Technology, 2021 (in Chinese). | |
14 | MAIER W T, NEEDELS J T, GARBACZ C, et al. SU2-NEMO: An open-source framework for high-Mach nonequilibrium multi-species flows[J]. Aerospace, 2021, 8(7): 193. |
15 | SATA 999. PyPanair [EB/OL]. (2017-04-20)[2022-10-28]. . |
16 | GENTRY A E, SMYTH D, OLIVER W. The Mark IV supersonic-hypersonic arbitrary-body program. volume II. program formulation[R]. 1973 |
17 | 李正洲, 贺元元, 高昌, 等. 有翼再入飞行器气动外形集成设计优化[J]. 航空学报, 2020, 41(5): 623356. |
LI Z Z, HE Y Y, GAO C, et al. Optimization of aeroshape integrated design of winged re-entry vehicles[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(5): 623356 (in Chinese). | |
18 | PARK S H, NEEB D, PLYUSHCHEV G, et al. A study on heat flux predictions for re-entry flight analysis[J]. Acta Astronautica, 2021, 187: 271-280. |
19 | ZHAO M. Prediction and validation technologies of aerodynamic force and heat for hypersonic vehicle design[M]. Singapore: Springer, 2021. |
20 | 周宇航. 考虑防热层的高速火箭弹气动热计算[D]. 南京: 南京理工大学, 2017. |
ZHOU Y H. Aerodynamic heat calculation of high-speed rocket with heat protection layer[D]. Nanjing: Nanjing University of Science and Technology, 2017 (in Chinese). | |
21 | 叶年辉, 龙腾, 武宇飞, 等. 基于Kriging代理模型的约束差分进化算法[J]. 航空学报, 2021, 42(6): 324580. |
YE N H, LONG T, WU Y F, et al. Kriging-assisted constrained differential evolution algorithm[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(6): 324580 (in Chinese). | |
22 | 韩忠华. Kriging模型及代理优化算法研究进展[J]. 航空学报, 2016, 37(11): 3197-3225. |
HAN Z H. Kriging surrogate model and its application to design optimization: A review of recent progress[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(11): 3197-3225 (in Chinese). | |
23 | DASH S, MANDAL B N, PARSAD R. On the construction of nested orthogonal Latin hypercube designs[J]. Metrika, 2020, 83(3): 347-353. |
24 | TOAL D J J. Some considerations regarding the use of multi-fidelity Kriging in the construction of surrogate models[J]. Structural and Multidisciplinary Optimization, 2015, 51(6): 1223-1245. |
25 | 李昊歌, 杨华, 杨雨欣, 等. 高超声速升力体迎风面精细化降热优化设计[J]. 航空学报, 2022, 43(S2): 124-137. |
Refinement optimization design for heat reduction on windward surface of hypersonic lifting body[J]. Acta Aeronauticaet Astronautica Sinica, 2022, 43(S2): 124-137 (in Chinese). | |
26 | 冉茂鹏, 王成才, 刘华华, 等. 变体飞行器控制技术发展现状与展望[J]. 航空学报, 2022, 43(10): 527449. |
RAN M P, WANG C C, LIU H H, et al. Development status and prospect of control technology for variant aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(10): 527449 (in Chinese). |
[1] | . Topology optimization design of thermoelastic multi-configuration gradi-ent lattice structures [J]. Acta Aeronautica et Astronautica Sinica, 0, (): 0-0. |
[2] | Mi XU, Zebei MAO, Bo WANG, Tong LI. An equivalent⁃deformation⁃modulus algorithm for fast optimization of anisotropic material distribution in thin plates [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(10): 229273-229273. |
[3] | Jiaqi LIU, Rongqian CHEN, Jinhua LOU, Xu HAN, Hao WU, Yancheng YOU. Aerodynamic shape optimization of high-speed helicopter rotor airfoil based on deep learning [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(9): 529828-529828. |
[4] | . Analysis of the characteristics of large-scale wavelength protuberances wings near the critical angle [J]. Acta Aeronautica et Astronautica Sinica, 0, (): 0-0. |
[5] | Jinzhao DAI, Haixin CHEN. Optimization design method of three⁃dimensional wave cancellation biplane derived by shock⁃wave morphology [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(6): 628942-628942. |
[6] | Shusheng CHEN, Muliang JIA, Yanxu LIU, Zhenghong GAO, Xinghao XIANG. Deformation modes and key technologies of aerodynamic layout design for morphing aircraft: Review [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(6): 629595-629595. |
[7] | Chao AN, Guixi HUO, Yang MENG, Changchuan XIE, Chao YANG. Aerodynamic modeling methods and influence of layout parameters for wingtip⁃hinged multi⁃body combined UAV [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(6): 629587-629587. |
[8] | Liu LIU, Xianhong XIANG, Yufei ZHANG, Haixin CHEN, Chuang WEI, Jian ZHU, Pu YANG. A high lift-to-drag ratio unconventional blended-wing-body aerodynamic configuration with swallow tail [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(6): 629630-629630. |
[9] | Haifeng WANG. Key technologies in collaborative airframe⁃engine design for high performance fighters [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(5): 529978-529978. |
[10] | Haoda LI, Teng LONG, Renhe SHI, Nianhui YE. Kriging?based mixed?integer optimization method using sample mapping mechanism for flight vehicle design [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(3): 228726-228726. |
[11] | . Research progress of flapping wing aircraft with multimodal motion ability [J]. Acta Aeronautica et Astronautica Sinica, 0, (): 0-0. |
[12] | . Overall parameter design of solar UAV considering uncertainty [J]. Acta Aeronautica et Astronautica Sinica, 0, (): 0-0. |
[13] | . Integrated optimization of energy management strategy and mission path for hybrid-electric VTOL UAVs in cargo transportation [J]. Acta Aeronautica et Astronautica Sinica, 0, (): 0-0. |
[14] | Xuhui ZHANG, Chunlei XIE, Sijia LIU, Ming YAN, Siyuan XING. Development needs and difficulty analysis for smart morphing aircraft [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(21): 529302-529302. |
[15] | Jingyu GU, Shuai LI, Aman ZHANG. Development and collapse mechanism of underwater vessel water exit cavitation [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(21): 528820-528820. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Address: No.238, Baiyan Buiding, Beisihuan Zhonglu Road, Haidian District, Beijing, China
Postal code : 100083
E-mail:hkxb@buaa.edu.cn
Total visits: 6658907 Today visits: 1341All copyright © editorial office of Chinese Journal of Aeronautics
All copyright © editorial office of Chinese Journal of Aeronautics
Total visits: 6658907 Today visits: 1341