Acta Aeronautica et Astronautica Sinica ›› 2024, Vol. 45 ›› Issue (5): 529893-529893.doi: 10.7527/S1000-6893.2023.29893
• Reviews • Previous Articles Next Articles
Huitao FAN1(), Pengfei DUAN2,3, Cheng YUAN2
Received:
2023-11-20
Revised:
2023-11-22
Accepted:
2023-11-23
Online:
2024-03-15
Published:
2023-12-01
Contact:
Huitao FAN
E-mail:s2u7j1w0@163.com
CLC Number:
Huitao FAN, Pengfei DUAN, Cheng YUAN. Disruptive technologies in aviation: Preliminary study[J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(5): 529893-529893.
1 | 钟文丽, 赵金辉, 杨筱. 推进颠覆性技术发展是大国博弈的战略选择[J]. 国防科技, 2018, 39(5): 43-47. |
ZHONG W L, ZHAO J H, YANG X. Promoting disruptive technology development is a strategic choice for big powers[J]. Defense Technology Review, 2018, 39(5): 43-47 (in Chinese). | |
2 | 曲冠楠, 陈凯华, 陈劲. 颠覆性技术创新:理论源起、整合框架与发展前瞻[J]. 科研管理, 2023, 44(9): 1-9. |
QU G N, CHEN K H, CHEN J. Disruptive technovation: origins, integrated framework, and prospects[J]. Science Research Management, 2023, 44(9): 1-9 (in Chinese). | |
3 | 刘安蓉, 李莉, 曹晓阳, 等. 颠覆性技术概念的战略内涵及政策启示[J]. 中国工程科学, 2018, 20(6): 7-13. |
LIU A R, LI L, CAO X Y, et al. The strategic connotation and policy enlightenment of the concept of disruptive technology[J]. Strategic Study of CAE, 2018, 20(6): 7-13 (in Chinese). | |
4 | 苏鹏, 苏成, 潘云涛. 颠覆性技术识别方法发展现状及启示[J]. 图书情报工作, 2019, 63(20): 129-138. |
SU P, SU C, PAN Y T. Overview and considerations on disruptive technology identification method[J]. Library and Information Service, 2019, 63(20): 129-138 (in Chinese). | |
5 | 荆象新, 锁兴文, 耿义峰. 颠覆性技术发展综述及若干启示[J]. 国防科技, 2015, 36(3): 11-13. |
JING X X, SUO X W, GENG Y F. Review and revelation on disruptive technology development[J]. National Defense Science & Technology, 2015, 36(3): 11-13 (in Chinese). | |
6 | 王志勇, 党晓玲, 刘长利, 等. 颠覆性技术的基本特征与国外研究的主要做法[J]. 国防科技, 2015, 36(3): 14-17, 22. |
WANG Z Y, DANG X L, LIU C L, et al. Characteristics of disruptive technology and international research survey[J]. National Defense Science & Technology, 2015, 36(3): 14-17, 22 (in Chinese). | |
7 | 王超, 许海云, 方曙. 颠覆性技术识别与预测方法研究进展[J]. 科技进步与对策, 2018, 35(9): 152-160. |
WANG C, XU H Y, FANG S. Progress of approaches for identification and forecasting of disruptive technologies[J]. Science & Technology Progress and Policy, 2018, 35(9): 152-160 (in Chinese). | |
8 | 黄鲁成, 成雨, 吴菲菲, 等. 关于颠覆性技术识别框架的探索[J]. 科学学研究, 2015, 33(5): 654-664. |
HUANG L C, CHENG Y, WU F F, et al. Study on identification framework of disruptive technology[J]. Studies in Science of Science, 2015, 33(5): 654-664 (in Chinese). | |
9 | 宁朝山. 工业革命演进与新旧动能转换: 基于历史与逻辑视角的分析[J]. 宏观经济管理, 2019(11): 18-27. |
NING C S. The evolution of the industrial revolution and replacing old growth drivers with new ones—an analysis from the historical and logical perspective[J]. Macroeconomic Management, 2019(11): 18-27 (in Chinese). | |
10 | 龚淑林. 美国第二次工业革命及其影响[J]. 南昌大学学报(人文社会科学版), 1988, 19(1): 67-74, 101. |
GONG S L. The second American industrial revolution and its influence[J]. Journal of Nanchang University (Social Science), 1988, 19(1): 67-74, 101 (in Chinese). | |
11 | 游翰霖, 陈方舟, 成清. 从大国博弈视角解读与应对第三次抵消战略[J]. 国防科技, 2017, 38(4): 88-93. |
YOU H L, CHEN F Z, CHENG Q. Understanding and coping with the Third Offset Strategy from the perspective of superpower games[J]. National Defense Science & Technology, 2017, 38(4): 88-93 (in Chinese). | |
12 | 刘一鸣, 石海明. 技术制胜: 美军第三次“抵消战略” 评析[J]. 指挥与控制学报, 2016, 2(2): 167-171. |
LIU Y M, SHI H M. Technology subduing: analysis of the U.S. third “offset strategy”[J]. Journal of Command and Control, 2016, 2(2): 167-171 (in Chinese). | |
13 | 程不时. 创造了“王牌飞行员” 的机枪协调器[J]. 航空知识, 2006(6): 60. |
CHENG B S. Created the machine Gun coordinator of the “Ace Pilot”[J]. Aerospace Knowledge, 2006(6): 60 (in Chinese). | |
14 | 杨树谦. 精确制导技术发展现状与展望[J]. 航天控制, 2004, 22(4): 17-20. |
YANG S Q. Development and prospect of PGM technology[J]. Aerospace Control, 2004, 22(4): 17-20 (in Chinese). | |
15 | 梁薇, 张科. 精确制导武器发展及其关键技术[J]. 火力与指挥控制, 2008, 33(12): 5-7, 12. |
LIANG W, ZHANG K. Development and key technologies of precise-guidance weapon[J]. Fire Control and Command Control, 2008, 33(12): 5-7, 12 (in Chinese). | |
16 | 朱长征. 飞机的隐身技术现状及发展趋势[J]. 航天电子对抗, 2001, 17(6): 42-45. |
ZHU C Z. Present situation and development trend of stealth technology of aircraft[J]. Aerospace Electronic Warfare, 2001, 17(6): 42-45 (in Chinese). | |
17 | 樊会涛, 闫俊. 空战体系的演变及发展趋势[J]. 航空学报, 2022, 43(10): 527397. |
FAN H T, YAN J. Evolution and development trend of air combat system[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(10): 527397 (in Chinese). | |
18 | 陈辛, 张俊宝. 空战模式演变与隐身空战形态发展分析[J]. 航空兵器, 2022, 29(3): 1-7. |
CHEN X, ZHANG J B. Analysis on the evolution of air combat mode and the development of stealth air combat form[J]. Aero Weaponry, 2022, 29(3): 1-7 (in Chinese). | |
19 | 樊会涛, 张蓬蓬. 空空导弹面临的挑战[J]. 航空兵器, 2017, 24(2): 3-7. |
FAN H T, ZHANG P P. The challenges for air-to-air missile[J]. Aero Weaponry, 2017, 24(2): 3-7 (in Chinese). | |
20 | 梁晓庚, 田宏亮. 临近空间高超声速飞行器发展现状及其防御问题分析[J]. 航空兵器, 2016, 23(4): 3-10. |
LIANG X G, TIAN H L. Analysis of the development status and the defense problem of near space hypersonic vehicle[J]. Aero Weaponry, 2016, 23(4): 3-10 (in Chinese). | |
21 | 鲜勇, 李扬. 人工智能技术对未来空战武器的变革与展望[J]. 航空兵器, 2019, 26(5): 26-31. |
XIAN Y, LI Y. Revolution and prospect of artificial intelligence technology for air combat weapons in the future[J]. Aero Weaponry, 2019, 26(5): 26-31 (in Chinese). | |
22 | 刘代军, 王超磊. 空空导弹智能化技术的发展与展望[J]. 航空兵器, 2019, 26(1): 25-29. |
LIU D J, WANG C L. Development and prospect of air-to-air missile intelligentization[J]. Aero Weaponry, 2019, 26(1): 25-29 (in Chinese). | |
23 | 程运江, 张程, 赵日, 等. 人工智能的发展及其在未来战争中的影响与应用思考[J]. 航空兵器, 2019, 26(1): 58-62. |
CHENG Y J, ZHANG C, ZHAO R, et al. Development of artificial intelligence and thoughts on its influence and application in the future war[J]. Aero Weaponry, 2019, 26(1): 58-62 (in Chinese). | |
24 | 乔绅. 超材料与带状线相结合的高Q滤波结构设计[J]. 航空兵器, 2020, 27(3): 79-82. |
QIAO S. Design of high-Q filter structure based on combination of metamaterial and strip line[J]. Aero Weaponry, 2020, 27(3): 79-82 (in Chinese). | |
25 | 郭正玉, 毕冉, 马征峥, 等. 智能隐身材料在空空导弹结构设计中的应用展望[J]. 航空兵器, 2023, 30(2): 21-30. |
GUO Z Y, BI R, MA Z Z, et al. Application prospect of intelligent stealth materials in air-to-air missile structure design[J]. Aero Weaponry, 2023, 30(2): 21-30 (in Chinese). | |
26 | 陈敏, 张纪元, 唐海龙, 等. 自适应循环发动机总体设计技术探讨[J]. 航空动力学报, 2022, 37(10): 2046-2058. |
CHEN M, ZHANG J Y, TANG H L, et al. Discussion on overall performance design technology of adaptive cycle engine[J]. Journal of Aerospace Power, 2022, 37(10): 2046-2058 (in Chinese). | |
27 | TRIMBLE S. DARPA aims gambit missile project at fourth-gen fighters [EB/OL]. (2022-08)[2023-11-20]. . |
28 | 刘艳鹏, 龚安民, 丁鹏, 等. 基于言语想象的脑机交互关键技术[J]. 生物医学工程学杂志, 2022, 39(3): 596-611. |
LIU Y P, GONG A M, DING P, et al. Key technology of brain-computer interaction based on speech imagery[J]. Journal of Biomedical Engineering, 2022, 39(3): 596-611 (in Chinese). | |
29 | 魏士松. 基于脑-机接口的飞行器虚拟现实模拟驾驶系统研究[D]. 南京: 南京航空航天大学, 2021. |
WEI S S. Research on virtual reality simulation driving system of aircraft based on brain-computer interface[D].Nanjing: Nanjing University of Aeronautics and Astronautics, 2021 (in Chinese). | |
30 | 李茜. 2022高超声速技术进展[J]. 航空动力, 2023(1): 15-18. |
LI Q. Progress of hypersonic technology in 2022[J]. Aerospace Power, 2023(1): 15-18 (in Chinese). | |
31 | 陈龙, 宋庆国, 廖孟豪. 国防领域航空颠覆性技术识别[J]. 航空科学技术, 2022, 33(5): 37-43. |
CHEN L, SONG Q G, LIAO M H. Identifying disruptive technologies in military aviation for defense[J]. Aeronautical Science & Technology, 2022, 33(5): 37-43 (in Chinese). | |
32 | 赵鸿燕, 周丽. 国外高功率微波武器发展研究[J]. 航空兵器, 2023, 30(4): 42-48. |
ZHAO H Y, ZHOU L. Research on the development of high-power microwave weapon abroad[J]. Aero Weaponry, 2023, 30(4): 42-48 (in Chinese). | |
33 | 范晋祥, 陈晶华. 美军机载武器的新发展[J]. 航空兵器, 2020, 27(5): 13-22. |
FAN J X, CHEN J H. New development of American airborne weapons[J]. Aero Weaponry, 2020, 27(5): 13-22 (in Chinese). | |
34 | 吴涛涛, 王茜, 武晓龙. 定向能武器在无人化战争中的制胜机理及运用特点[J]. 国防科技, 2022, 43(5): 137-142. |
WU T T, WANG Q, WU X L. Winning mechanism and application characteristics of directed energy weapons in unmanned warfare[J]. National Defense Technology, 2022, 43(5): 137-142 (in Chinese). |
[1] | . Single photon counting imaging denoising method based on deep learning in low light environment [J]. Acta Aeronautica et Astronautica Sinica, 0, (): 0-0. |
[2] | . Microwave photonic time-frequency analysis technique for spectrum sensing in space [J]. Acta Aeronautica et Astronautica Sinica, 0, (): 0-0. |
[3] | . Thermal structure technology development of rocket based combined cycle engine [J]. Acta Aeronautica et Astronautica Sinica, 0, (): 0-0. |
[4] | Xiaoyong LIU, Mingfu WANG, Jianwen LIU, Xin REN, Xuan ZHANG. Review and prospect of research on scramjet [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(5): 529878-529878. |
[5] | . Multi-agent Communication Cooperation Based on Deep Reinforcement Learning and Information Theory [J]. Acta Aeronautica et Astronautica Sinica, 0, (): 0-0. |
[6] | Lili CHEN, Jianxia LIU, Juntao ZHANG, Zheng GUO, Anping WU, Zhongxi HOU. Waverider forebody design method with longitudinal segments and multi-stage compression [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(4): 128744-128744. |
[7] | . Microwave Photonic Frequency Measurement Based on Frequency-To-Time Mapping (Original Manuscript ID: 23-29488) [J]. Acta Aeronautica et Astronautica Sinica, 0, (): 0-0. |
[8] | . Research on vibration damping electric actuator system under parallel in-dependent control strategy [J]. Acta Aeronautica et Astronautica Sinica, 0, (): 0-0. |
[9] | Weilin NI, Yonghai WANG, Cong XU, Fenghua CHI, Haizhao LIANG. Cooperative game guidance method for hypersonic vehicles based on reinforcement learning [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(S2): 729400-729400. |
[10] | . Development needs and difficulty analysis for smart morphing aircraft [J]. Acta Aeronautica et Astronautica Sinica, 0, (): 0-0. |
[11] | Gang LEI, Wei LUO, Yunshu LI, Canhui LAI. Optimization of reentry maneuver trajectory for hypersonic glide vehicles in multiple no-fly zones [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(15): 528769-528769. |
[12] | Haolan CHEN, Peng WANG, Guojian TANG. Attitude control scheme for morphing vehicles with output error constraints and input saturation [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(15): 528762-528762. |
[13] | Guang MENG, Chang LIU, Dongchun YANG, Chenghong ZHOU, Hua ZHOU. First flight of SpaceX heavy-lift starship: Enlightenment for aerospace industry in China [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(10): 28914-028914. |
[14] | Xiaolong DENG, Xixiang YANG, Bingjie ZHU, Zhenyu MA, Zhongxi HOU. Simulation research and key technologies analysis of intelligent stratospheric aerostat Loon [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(8): 127412-127412. |
[15] | Jian HAN, Shiyong SUN, Bin NIU, Rui YANG, Dongjiang WU. Progress in manufacturing technologies of resin⁃based composite lattice structures [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(9): 628255-628255. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Address: No.238, Baiyan Buiding, Beisihuan Zhonglu Road, Haidian District, Beijing, China
Postal code : 100083
E-mail:hkxb@buaa.edu.cn
Total visits: 6658907 Today visits: 1341All copyright © editorial office of Chinese Journal of Aeronautics
All copyright © editorial office of Chinese Journal of Aeronautics
Total visits: 6658907 Today visits: 1341