Acta Aeronautica et Astronautica Sinica ›› 2023, Vol. 44 ›› Issue (22): 628977-628977.doi: 10.7527/S1000-6893.2023.28977
• special column • Previous Articles Next Articles
Received:
2023-05-08
Revised:
2023-05-30
Accepted:
2023-07-11
Online:
2023-11-25
Published:
2023-07-28
Contact:
Jianjiang ZHOU
E-mail:zjjee@nuaa.edu.cn
Supported by:
CLC Number:
Xiaohang LI, Jianjiang ZHOU. Multi⁃scale modality fusion network based on adaptive memory length[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(22): 628977-628977.
Table 3
Comparison of performance of different network models for semantic segmentation on Semantikitti dataset
网络模型 | car | bicycle | motorcycle | truck | other-vehicle | person | bicyclist | road | parking | sidewalk | other-ground | building | fence | vegetation | trunk | terrain | pole | traffic-sign | 模态 | mIoU /% |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
3D-MiniNet[ | 90.5 | 42.3 | 42.1 | 28.5 | 29.4 | 47.8 | 44.1 | 91.6 | 64.2 | 74.5 | 25.4 | 89.4 | 60.8 | 82.8 | 60.8 | 66.7 | 48.0 | 56.6 | L | 55.8 |
Meta-RangeSeg[ | 93.9 | 50.1 | 43.8 | 43.9 | 43.2 | 63.7 | 53.1 | 90.6 | 64.3 | 74.6 | 29.2 | 91.1 | 64.7 | 82.6 | 65.5 | 65.5 | 56.3 | 64.2 | L | 61.0 |
RangeNet53++[ | 91.4 | 25.7 | 34.4 | 25.7 | 23.0 | 38.3 | 38.8 | 91.8 | 65.0 | 75.2 | 27.8 | 87.4 | 58.6 | 80.5 | 55.1 | 64.6 | 47.9 | 55.9 | L | 52.2 |
NAPL[ | 96.6 | 32.3 | 43.6 | 47.3 | 47.5 | 51.1 | 53.9 | 89.6 | 67.1 | 73.7 | 31.2 | 91.9 | 67.4 | 84.8 | 69.8 | 68.8 | 59.1 | 59.2 | L | 61.6 |
SqueezesegV3[ | 92.5 | 38.7 | 36.5 | 29.6 | 33.0 | 45.6 | 46.2 | 91.7 | 63.4 | 74.8 | 26.4 | 89.0 | 59.4 | 82.0 | 58.7 | 65.4 | 49.6 | 58.9 | L | 55.9 |
SalsaNext[ | 91.9 | 48.3 | 38.6 | 38.9 | 31.9 | 60.2 | 59.0 | 91.7 | 63.7 | 75.8 | 29.1 | 90.2 | 64.2 | 81.8 | 63.6 | 66.5 | 54.3 | 62.1 | L | 59.5 |
MVP-Net[ | 92.7 | 37.2 | 17.7 | 20.2 | 13.8 | 50.0 | 55.8 | 91.4 | 61.4 | 75.9 | 25.6 | 85.8 | 55.2 | 83.2 | 64.5 | 69.3 | 51.8 | 59.2 | L | 59.2 |
KPRNet[ | 95.5 | 54.1 | 47.9 | 23.6 | 42.6 | 65.9 | 65.0 | 93.2 | 73.9 | 80.6 | 30.2 | 91.7 | 68.4 | 85.7 | 69.8 | 71.2 | 58.7 | 64.1 | L+C | 63.1 |
HiFANet[ | 93.3 | 16.9 | 54.7 | 24.7 | 57.7 | 91.0 | 79.0 | 90.3 | 34.9 | 75.5 | 91.2 | 54.0 | 37.4 | L+C | 62.0 | |||||
MerNet | 95.2 | 41.0 | 60.5 | 72.7 | 76.9 | 75.0 | 80.3 | 96.4 | 46.8 | 80.6 | 0.7 | 87.9 | 61.1 | 87.1 | 69.9 | 72.9 | 63.0 | 42.8 | L+C | 63.7 |
1 | 彭冬亮, 文成林, 薛安克. 多传感器多源信息融合理论及应用[M]. 北京: 科学出版社, 2010. |
PENG D L, WEN C L, XUE A K. Theory and application of multi-sensor and multi-source information fusion[M]. Beijing: Science Press, 2010 (in Chinese). | |
2 | CHEN L C, PAPANDREOU G, KOKKINOS I, et al. Semantic image segmentation with deep convolutional nets and fully connected CRFs[DB/OL]. arXiv preprint: 1412.7062, 2014. |
3 | CHEN L C, PAPANDREOU G, KOKKINOS I, et al. DeepLab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018, 40(4): 834-848. |
4 | CHEN L C, PAPANDREOU G, SCHROFF F, et al. Rethinking atrous convolution for semantic image segmentation[DB/OL]. arXiv preprint: 1706.05587, 2017. |
5 | CORTINHAL T, TZELEPIS G, AKSOY E E. SalsaNext: Fast, uncertainty-aware semantic segmentation of LiDAR point clouds for autonomous driving[DB/OL]. arXiv preprint: 2003.03653, 2020. |
6 | AKSOY E E, BACI S, CAVDAR S. SalsaNet: Fast road and vehicle segmentation in LiDAR point clouds for autonomous driving[C]∥ 2020 IEEE Intelligent Vehicles Symposium (IV). Piscataway: IEEE Press, 2021: 926-932. |
7 | VAN GANSBEKE W, NEVEN D, DE BRABANDERE B, et al. Sparse and noisy LiDAR completion with RGB guidance and uncertainty[C]∥ 2019 16th International Conference on Machine Vision Applications (MVA). Piscataway: IEEE Press, 2019: 1-6. |
8 | MEYER G P, CHARLAND J, HEGDE D, et al. Sensor fusion for joint 3D object detection and semantic segmentation[C]∥ 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). Piscataway: IEEE Press, 2020: 1230-1237. |
9 | CORTINHAL T, KURNAZ F, AKSOY E E. Semantics-aware multi-modal domain translation: From LiDAR point clouds to panoramic color images[C]∥ 2021 IEEE/CVF International Conference on Computer Vision Workshops (ICCVW). Piscataway: IEEE Press, 2021: 3032-3041. |
10 | RUDER S. An overview of gradient descent optimization algorithms[DB/OL]. arXiv preprint: 1609.04747, 2016. |
11 | KINGMA D P, BA J. Adam: A method for stochastic optimization[J]. arXiv preprint: 1412.6980, 2014. |
12 | LUO L C, XIONG Y H, LIU Y, et al. Adaptive gradient methods with dynamic bound of learning rate[DB/OL]. arXiv preprint:1902.09843, 2019. |
13 | DING J B, REN X C, LUO R X, et al. An adaptive and momental bound method for stochastic learning[DB/OL]. arXiv preprint:1910.12249, 2019. |
14 | JADON S. A survey of loss functions for semantic segmentation[C]∥ 2020 IEEE Conference on Computational Intelligence in Bioinformatics and Computational Biology (CIBCB). Piscataway: IEEE Press, 2020: 1-7. |
15 | XIE S N, TU Z W. Holistically-nested edge detection[C]∥ 2015 IEEE International Conference on Computer Vision (ICCV). Piscataway: IEEE Press, 2016: 1395-1403. |
16 | LIN T Y, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection[C]∥ 2017 IEEE International Conference on Computer Vision (ICCV). Piscataway: IEEE Press, 2017: 2999-3007. |
17 | HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]∥ 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway: IEEE Press, 2016: 770-778. |
18 | BERMAN M, TRIKI A R, BLASCHKO M B. The lovasz-softmax loss: A tractable surrogate for the optimization of the intersection-over-union measure in neural networks[C]∥ 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2018: 4413-4421. |
19 | ISLAM M A, ROCHAN M, BRUCE N D B, et al. Gated feedback refinement network for dense image labeling[C]∥ 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway: IEEE Press, 2017: 4877-4885. |
20 | BOCHKOVSKIY A, WANG C Y, LIAO H Y M. YOLOv4: Optimal speed and accuracy of object detection[DB/OL]. arXiv preprint: 2004.10934, 2020. |
21 | SANDLER M, HOWARD A, ZHU M L, et al. MobileNetV2: Inverted residuals and linear bottlenecks[C]∥ 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2018: 4510-4520. |
22 | BEHLEY J, GARBADE M, MILIOTO A, et al. SemanticKITTI: A dataset for semantic scene understanding of LiDAR sequences[C]∥ 2019 IEEE/CVF International Conference on Computer Vision (ICCV). Piscataway: IEEE Press, 2020: 9296-9306. |
23 | ALONSO I, RIAZUELO L, MONTESANO L, et al. 3D-MiniNet: Learning a 2D representation from point clouds for fast and efficient 3D LIDAR semantic segmentation[J]. IEEE Robotics and Automation Letters, 2020, 5(4): 5432-5439. |
24 | WANG S, ZHU J K, ZHANG R X. Meta-RangeSeg: LiDAR sequence semantic segmentation using multiple feature aggregation[J]. IEEE Robotics and Automation Letters, 2022, 7(4): 9739-9746. |
25 | MILIOTO A, VIZZO I, BEHLEY J, et al. RangeNet: Fast and accurate LiDAR semantic segmentation[C]∥ 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Piscataway: IEEE Press, 2020: 4213-4220. |
26 | ZHAO Y H, WANG J, LI X L, et al. Number-adaptive prototype learning for 3D point cloud semantic segmentation[C]∥ European Conference on Computer Vision. Cham: Springer, 2023: 695-703. |
27 | XU C F, WU B C, WANG Z N, et al. SqueezeSegV3: Spatially-adaptive convolution for efficient point-cloud segmentation[C]∥ European Conference on Computer Vision. Cham: Springer, 2020: 1-19. |
28 | WANG J L, SUN B, LU Y. MVPNet: Multi-view point regression networks for 3D object reconstruction from A single image[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2019, 33(1): 8949-8956. |
29 | KOCHANOV D, NEJADASL F K, BOOIJ O. KPRNet: Improving projection-based LiDAR semantic segmentation[DB/OL]. arXiv preprint: 2007.12668, 2020. |
30 | GENOVA K, YIN X Q, KUNDU A, et al. Learning 3D semantic segmentation with only 2D image supervision[C]∥ 2021 International Conference on 3D Vision (3DV). Piscataway: IEEE Press, 2022: 361-372. |
[1] | Jiaqi LIU, Rongqian CHEN, Jinhua LOU, Xu HAN, Hao WU, Yancheng YOU. Aerodynamic shape optimization of high-speed helicopter rotor airfoil based on deep learning [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(9): 529828-529828. |
[2] | Chuanyun WANG, Yang SU, Linlin WANG, Tian WANG, Jingjing WANG, Qian GAO. Multi-object continuous robust tracking algorithm for anti-UAV swarm [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(7): 329017-329017. |
[3] | Xudong LUO, Yiquan WU, Jinlin CHEN. Research progress on deep learning methods for object detection and semantic segmentation in UAV aerial images [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(6): 28822-028822. |
[4] | Haiqiao LIU, Meng LIU, Zichao GONG, Jing DONG. A review of image matching methods based on deep learning [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(3): 28796-028796. |
[5] | Jiqiang GAN, Xiaoping WANG. Surface defect detection of fiber placement based on virtual sample generation [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(1): 428624-428624. |
[6] | Liqun CHEN, Xu ZOU, Lei ZHANG, Yingpan ZHU, Gang WANG, Jinyong CHEN. On⁃board intelligent target detection technology based on domestic commercial components [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(S2): 728860-728860. |
[7] | Xin SU, Runcheng GUAN, Qiao WANG, Weizheng YUAN, Xianglian LYU, Yang HE. Ice area and thickness detection method based on deep learning [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(S2): 729283-729283. |
[8] | Pengyu LIU, Xueyao ZHU. Semantic parsing technology of air traffic control instruction in fusion airspace based on deep learning [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(S1): 727592-727592. |
[9] | Zhiqiang FENG, Zhijun XIE, Zhengwei BAO, Kewei CHEN. Real⁃time dense small object detection algorithm for UAV based on improved YOLOv5 [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(7): 327106-327106. |
[10] | Lei HE, Weiqi QIAN, Kangsheng DONG, Xian YI, Congcong CHAI. Aerodynamic characteristics modeling of iced airfoil based on convolution neural networks [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(5): 126434-126434. |
[11] | Guotao MAO, Tianmin DENG, Nanjing YU. Object detection in UAV images based on multi-scale split attention [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(5): 326738-326738. |
[12] | Baohui JIA, Fan JIANG, Yuxin WANG, Du WANG. Fault diagnosis method based on civil aircraft maintenance text data [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(5): 326598-326598. |
[13] | Peng DING, Yafei SONG. A cost-sensitive method for aerial target intention recognition [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(24): 328551-328551. |
[14] | Yi ZHANG, Yan ZHANG, Yu ZHANG, Yong ZHANG, Di LIU. Infrared aircraft target detection method based on multi-level feature enhancement fusion [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(22): 629220-629220. |
[15] | Haowen LUO, Shaoming HE, Tianyu JIN, Zichao LIU. Impact-angle-constrained with time-minimum guidance algorithm based on transfer learning [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(19): 328400-328400. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Address: No.238, Baiyan Buiding, Beisihuan Zhonglu Road, Haidian District, Beijing, China
Postal code : 100083
E-mail:hkxb@buaa.edu.cn
Total visits: 6658907 Today visits: 1341All copyright © editorial office of Chinese Journal of Aeronautics
All copyright © editorial office of Chinese Journal of Aeronautics
Total visits: 6658907 Today visits: 1341