[1] 江波, 屈若锟, 李彦冬, 等. 基于深度学习的无人机航拍目标检测研究综述[J]. 航空学报, 2021, 42(04): 137-151. JIANG B, QU R K, LI Y D, et al. Object detection in UAV imagery based on deep learning: Review[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(04): 137151.[2] REN S Q, HE K M, GIRSHICK R, et al. Faster R-CNN: Towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137–1149.[3] REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: Unified, real-time object detection[C]. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016: 779-788.[4] LIU W, ANGUELOV D, ERHAN D, et al. SSD: Single shot MultiBox detector[C]. European Conference on Computer Vision (ECCV). Amsterdam: Springer, 2016: 21-37.[5] REDMON J, FARHADI A. YOLO9000: Better, Faster, Stronger[J]. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017:6517-6525.[6] REDMON J, FARHADI A. YOLOv3: An Incremental Improvement[J]. arXiv preprint arXiv: 1804.02767, 2018.[7] BOCHKOVSKIY A, WANG C Y, LIAO H. YOLOv4: Optimal Speed and Accuracy of Object Detection[J]. arXiv preprint arXiv: 2004.10934, 2020.[8] 李科岑, 王晓强, 林浩, 李雷孝, 杨艳艳, 孟闯, 高静. 深度学习中的单阶段小目标检测方法综述[J].计算机科学与探索, 2022, 16(01):41-58.LI KECEN, WANG XIAOQIANG , LIN HAO , LI LEIXIAO, YANG YANYAN, MENG CHUANG, GAO JING. Survey of One-Stage Small Object Detection Methods in Deep Learning [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(01):41-58.[9] WANG Q, ZHANG H, HONG X, et al. Small Ob-ject Detection Based on Modified FSSD and Model Compression[J]. arXiv preprint arXiv: 2108.10503, 2021. [10] GONG Y, YU X, DING Y, et al. Effective Fusion Fac-tor in FPN for Tiny Object Detection[J]. arXiv preprint arXiv: 2011.02298, 2020.[11] LIN T Y , DOLLAR P , GIRSHICK R , et al. Feature Pyramid Networks for Object Detection[J]. IEEE Con-ference on Computer Vision and Pattern Recognition (CVPR), 2017.106:936-944.[12] 刘芳,韩笑.基于多尺度深度学习的自适应航拍目标检测[J/OL]. 航空学报, (2021-03-02) [2022-01-21]. LIU FANG, HAN XIAO. Adaptive Aerial Object De-tection Based on Multi-Scale Deep Learning[J/OL]. Acta Aeronautica et Astronautica Sinica, (2021-03-02) [2022-01-21].[13] WOO S , PARK J , LEE J Y , et al. CBAM: Convolu-tional Block Attention Module[J]. European Conference on Computer Vision (ECCV), pages 3–19, 2018.[14] LIU S, QI L, QIN H F, et al. Path Aggregation Network for Instance Segmentation[C]. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2018: 8759–8768.[15] DAI Y, GIESEKE F, OEHMCKE S, et al. Attentional feature fusion[C]. IEEE/CVF Winter Conference on Ap-plications of Computer Vision. 2021: 3560-3569.[16] ZHU L, GENG X, LI Z, et al. Improving YOLOv5 with attention mechanism for detecting boulders from plane-tary images[J]. Remote Sensing, 2021, 13(18): 3776.[17] X ZHU, LYU S , X WANG, et al. TPH-YOLOv5: Im-proved YOLOv5 Based on Transformer Prediction Head for Object Detection on Drone-captured Scenari-os[J]. IEEE/CVF International Conference on Computer Vision. 2021: 2778-2788.[18] DOSOVITSKIY A , BEYER L , KOLESNIKOV A , et al. An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale[J]. International Conference on Learning Representations (ICLR), 2021.[19] PAN X, GE C, LU R, et al. On the Integration of Self-Attention and Convolution[J]. arXiv preprint arXiv:2111.14556, 2021.[20] VASWANI A, SHAZEER N, PARMAR N, et al. Atten-tion is all you need[J]. Advances in neural information processing systems, 2017, 30.[21] HE K, ZHANG X, REN S, et al. Spatial pyramid pool-ing in deep convolutional networks for visual recogni-tion[J]. IEEE transactions on pattern analysis and ma-chine intelligence, 2015, 37(9): 1904-1916.[22] CAI Z, VASCONCELOS N. Cascade r-cnn: Delving into high quality object detection[C]. The IEEE confer-ence on computer vision and pattern recognition. 2018: 6154-6162.[23] LIN T Y, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection[C]. Proceedings of the IEEE in-ternational conference on computer vision. 2017: 2980-2988.[24] ZHANG S, WEN L, BIAN X, et al. Single-shot refine-ment neural network for object detection[C]. Proceed-ings of the IEEE conference on computer vision and pat-tern recognition. 2018: 4203-4212.[25] LAW H, DENG J. Cornernet: Detecting objects as paired keypoints[C]. Proceedings of the European con-ference on computer vision (ECCV). 2018: 734-750. |