Acta Aeronautica et Astronautica Sinica ›› 2023, Vol. 44 ›› Issue (22): 629220-629220.doi: 10.7527/S1000-6893.2023.29220
• special column • Previous Articles Next Articles
Yi ZHANG, Yan ZHANG(), Yu ZHANG, Yong ZHANG, Di LIU
Received:
2023-06-26
Revised:
2023-07-17
Accepted:
2023-08-30
Online:
2023-11-25
Published:
2023-09-06
Contact:
Yan ZHANG
E-mail:atrthreefire@sina.com
Supported by:
CLC Number:
Yi ZHANG, Yan ZHANG, Yu ZHANG, Yong ZHANG, Di LIU. Infrared aircraft target detection method based on multi-level feature enhancement fusion[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(22): 629220-629220.
Table 4
Comparison of different detection and recognition algorithms
算法 | AP | AP0.5 | AP0.75 | APs | APm | APl | 帧数 | 参数量/M |
---|---|---|---|---|---|---|---|---|
Faster RCNN | 0.625 | 0.787 | 0.732 | 0.108 | 0.697 | 0.623 | 17 | 41.53 |
Cascade RCNN | 0.688 | 0.819 | 0.787 | 0.096 | 0.727 | 0.663 | 15 | 69.00 |
YOLOv3 | 0.612 | 0.861 | 0.731 | 0.103 | 0.586 | 0.656 | 65 | 3.69 |
YOLOX | 0.655 | 0.845 | 0.772 | 0.086 | 0.542 | 0.708 | 56 | 8.95 |
YOLOv8 | 0.680 | 0.880 | 0.810 | 0.091 | 0.523 | 0.731 | 47 | 11.15 |
FCOS | 0.546 | 0.715 | 0.655 | 0.297 | 0.468 | 0.536 | 19 | 31.90 |
RetinaNet | 0.666 | 0.816 | 0.784 | 0.092 | 0.602 | 0.702 | 17 | 32.95 |
SSD | 0.497 | 0.641 | 0.597 | 0.041 | 0.401 | 0.551 | 93 | 17.42 |
MFEFNet | 0.731 | 0.899 | 0.816 | 0.258 | 0.669 | 0.801 | 16 | 43.91 |
Table 5
Effect of network internal modules on detection and identification performance
算法 | AP | AP0.5 | AP0.75 | APs | APm | APl | 帧数 | 参数量/M |
---|---|---|---|---|---|---|---|---|
MFEFNet | 0.731 | 0.899 | 0.816 | 0.258 | 0.669 | 0.801 | 16 | 43.91 |
MFEFNet(w/o GEM) | 0.719 | 0.883 | 0.798 | 0.112 | 0.575 | 0.768 | 16 | 43.91 |
MFEFNet(w/o LGFE) | 0.682 | 0.822 | 0.772 | 0.185 | 0.633 | 0.725 | 17 | 32.95 |
MFEFNet(w/o CA) | 0.726 | 0.890 | 0.837 | 0.135 | 0.611 | 0.761 | 16 | 43.78 |
MFEFNet(w/o GPA) | 0.721 | 0.880 | 0.847 | 0.309 | 0.587 | 0.758 | 16 | 41.28 |
1 | 张凯, 刘昊, 杨曦, 等. 基于关键点检测网络的空中红外目标要害部位识别算法[J]. 西北工业大学学报, 2020, 38(6): 1154-1162. |
ZHANG K, LIU H, YANG X, et al. Identification algorithm based on key-point detection network for vital parts of infrared aerial target[J]. Journal of Northwestern Polytechnical University, 2020, 38(6): 1154-1162 (in Chinese). | |
2 | ZHANG Y, ZHANG Y, FU R G, et al. Learning nonlocal quadrature contrast for detection and recognition of infrared rotary-wing UAV targets in complex background[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 1-19. |
3 | 欧阳欢, 范大昭, 郭静, 等. 结合显著性检测与特征匹配的飞机目标识别[J]. 测绘通报, 2020(3): 1-6. |
OUYANG H, FAN D Z, GUO J, et al. Aircraft target recognition based on saliency detection and feature matching[J]. Bulletin of Surveying and Mapping, 2020(3): 1-6 (in Chinese). | |
4 | HU Q, LI R S, XU Y, et al. Toward aircraft detection and fine-grained recognition from remote sensing images[J]. Journal of Applied Remote Sensing, 2022, 16(2): 024516. |
5 | HUANG H L, HUANG J C, FENG Y H, et al. Aircraft type recognition based on target track[J]. Journal of Physics: Conference Series, 2018, 1061: 012015. |
6 | 李婕, 周顺, 朱鑫潮, 等. 结合多通道注意力的遥感图像飞机目标检测[J]. 计算机工程与应用, 2022, 58(1): 209-217. |
LI J, ZHOU S, ZHU X C, et al. Remote sensing image aircraft target detection combined with multiple channel attention[J]. Computer Engineering and Applications, 2022, 58(1): 209-217 (in Chinese). | |
7 | KOU R K, WANG C P, FU Q, et al. Infrared small target detection based on the improved density peak global search and human visual local contrast mechanism[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2022, 15: 6144-6157. |
8 | 蔡红苹, 耿振伟, 粟毅. 遥感图像飞机检测新方法: 圆周频率滤波法[J]. 信号处理, 2007, 23(4): 539-543. |
CAI H P, GENG Z W, SU Y. A new method to detect airplanes in remote sensing image—circle-frequency filter[J]. Signal Processing, 2007, 23(4): 539-543 (in Chinese). | |
9 | AN Z Y, SHI Z W, TENG X C, et al. An automated airplane detection system for large panchromatic image with high spatial resolution[J]. Optik, 2014, 125(12): 2768-2775. |
10 | 李萍, 张波, 尚怡君. 基于红外图像和特征融合的飞机目标识别方法[J]. 电光与控制, 2016, 23(8): 92-96. |
LI P, ZHANG B, SHANG Y J. Aircraft target identification based on infrared image and feature fusion[J]. Electronics Optics & Control, 2016, 23(8): 92-96 (in Chinese). | |
11 | XU C F, DUAN H B. Artificial bee colony (ABC) optimized edge potential function (EPF) approach to target recognition for low-altitude aircraft[J]. Pattern Recognition Letters, 2010, 31(13): 1759-1772. |
12 | ZHAO A, FU K, WANG S Y, et al. Aircraft recognition based on landmark detection in remote sensing images[J]. IEEE Geoscience and Remote Sensing Letters, 2017, 14(8): 1413-1417. |
13 | WU Q C, SUN H, SUN X, et al. Aircraft recognition in high-resolution optical satellite remote sensing images[J]. IEEE Geoscience and Remote Sensing Letters, 2014, 12(1): 112-116. |
14 | 钟都都, 王建华, 张凯, 等. 用于红外目标跟踪的模板匹配改进算法[J]. 飞行器测控学报, 2008, 27(3): 63-67. |
ZHONG D D, WANG J H, ZHANG K, et al. An improved template matching method for IR object tracking[J]. Journal of Spacecraft TT&C Technology, 2008, 27(3): 63-67 (in Chinese). | |
15 | 方涛. 一种基于显著性与卷积神经网络的红外飞机识别算法[D]. 武汉: 华中科技大学, 2014. |
FANG T. An infrared aircraft recognition algorithm based on saliency and convolutional neural network[D].Wuhan: Huazhong University of Science and Technology, 2014 (in Chinese). | |
16 | ZUO J W, XU G L, FU K, et al. Aircraft type recognition based on segmentation with deep convolutional neural networks[J]. IEEE Geoscience and Remote Sensing Letters, 2018, 15(2): 282-286. |
17 | 刘思婷. 基于深度神经网络的遥感影像飞机目标检测与型号识别方法[D]. 兰州: 兰州交通大学, 2022. |
LIU S T. Aircraft target detection and type recognition in remote sensing imagery based on deep neural network[D]. Lanzhou: Lanzhou Jiatong University, 2022 (in Chinese). | |
18 | 沙苗苗, 李宇, 李安. 改进Faster R-CNN的遥感图像多尺度飞机目标检测[J]. 遥感学报, 2022, 26(8): 1624-1635. |
SHA M M, LI Y, LI A. Multiscale aircraft detection in optical remote sensing imagery based on advanced Faster R-CNN[J]. National Remote Sensing Bulletin, 2022, 26(8): 1624-1635 (in Chinese). | |
19 | 吴杰, 高策, 余毅, 等. 改进LDS_YOLO网络的遥感飞机检测算法研究[J]. 计算机工程与应用, 2022, 58(15): 210-219. |
WU J, GAO C, YU Y, et al. Research on improved LDS_YOLO network remote sensing aircraft detection algorithm[J]. Computer Engineering and Applications, 2022, 58(15): 210-219 (in Chinese). | |
20 | LIN T Y, DOLLÁR P, GIRSHICK R, et al. Feature pyramid networks for object detection[C]∥ 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway: IEEE Press, 2017: 936-944. |
21 | REN S Q, HE K M, GIRSHICK R, et al. Faster R-CNN: Towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137-1149. |
22 | CAI Z W, VASCONCELOS N. Cascade R-CNN: Delving into high quality object detection[C]∥ 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2018: 6154-6162. |
23 | REDMON J, FARHADI A. YOLOv3: An incremental improvement[DB/OL]. arXiv preprint: 1804.02767, 2018. |
24 | GE Z, LIU S T, WANG F, et al. YOLOX: Exceeding YOLO series in 2021[DB/OL]. arXiv preprint: 2107.08430, 2021. |
25 | LIU W, ANGUELOV D, ERHAN D, et al. SSD: Single shot MultiBox detector[M]∥Computer Vision – ECCV 2016. Cham: Springer International Publishing, 2016: 21-37. |
26 | LIN T Y, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection[C]∥2017 IEEE International Conference on Computer Vision (ICCV). Piscataway: IEEE Press, 2017: 2999-3007. |
27 | TIAN Z, SHEN C H, CHEN H, et al. FCOS: Fully convolutional one-stage object detection[C]∥2019 IEEE/CVF International Conference on Computer Vision (ICCV). Piscataway: IEEE Press, 2020: 9626-9635. |
[1] | Chuanyun WANG, Yang SU, Linlin WANG, Tian WANG, Jingjing WANG, Qian GAO. Multi-object continuous robust tracking algorithm for anti-UAV swarm [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(7): 329017-329017. |
[2] | Jiqiang GAN, Xiaoping WANG. Surface defect detection of fiber placement based on virtual sample generation [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(1): 428624-428624. |
[3] | Zhiqiang FENG, Zhijun XIE, Zhengwei BAO, Kewei CHEN. Real⁃time dense small object detection algorithm for UAV based on improved YOLOv5 [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(7): 327106-327106. |
[4] | Guotao MAO, Tianmin DENG, Nanjing YU. Object detection in UAV images based on multi-scale split attention [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(5): 326738-326738. |
[5] | Baohui JIA, Fan JIANG, Yuxin WANG, Du WANG. Fault diagnosis method based on civil aircraft maintenance text data [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(5): 326598-326598. |
[6] | Xiaohang LI, Jianjiang ZHOU. Multi⁃scale modality fusion network based on adaptive memory length [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(22): 628977-628977. |
[7] | Zihao LI, Zhengping WANG, Yuntao HE. Aerial-photography dense small target detection algorithm based on adaptive cooperative attention mechanism [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(13): 327944-327944. |
[8] | Tianyu DU, Min WANG, Wenliang CHEN. Robust detection method of multi⁃type assembly reference hole based on monocular vision [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(12): 427852-427852. |
[9] | ZHANG Zhouyu, CAO Yunfeng, FAN Yanming. Research progress of vision based aerospace conflict sensing technologies for small unmanned aerial vehicle in low altitude [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(8): 25645-025645. |
[10] | LIU Fang, SUN Yanan. UAV target tracking algorithm based on adaptive fusion network [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(7): 325522-325522. |
[11] | LIU Zhan, ZHANG Jun, YIN Jia, ZHAO Wanhua. On-machine detection of geometric and state parameters of end mills based on machine vision [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(7): 425593-425593. |
[12] | LIU Fang, HAN Xiao. Adaptive aerial object detection based on multi-scale deep learning [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(5): 325270-325270. |
[13] | WANG Zi, SUN Xiaoliang, LI Zhang, CHENG Zilong, YU Qifeng. Transformer based monocular satellite pose estimation [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(5): 325298-325298. |
[14] | KANG Shuo, KE Zhenzheng, WANG Xuan, ZHU Weidong. Detection method of defects in automatic fiber placement based on fusion of infrared and visible images [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(3): 425187-425187. |
[15] | DOU Jianyu, PAN Chong. Spatial calibration model of stereo PIV based on neural network [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2021, 42(4): 524720-524720. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Address: No.238, Baiyan Buiding, Beisihuan Zhonglu Road, Haidian District, Beijing, China
Postal code : 100083
E-mail:hkxb@buaa.edu.cn
Total visits: 6658907 Today visits: 1341All copyright © editorial office of Chinese Journal of Aeronautics
All copyright © editorial office of Chinese Journal of Aeronautics
Total visits: 6658907 Today visits: 1341