[1] ZHU D H, FENG X Z, XU X H, et al. Robotic grinding of complex components: A step towards efficient and intelligent machining –challenges, solutions, and applications[J]. Robotics and Computer Integrated Manufacturing, 2020, 65: 101908. [2] 王立凡.大型薄壁构件镜像加工装备运动控制技术研究[D]. 大连: 大连理工大学, 2019:1-5.WANG L F. Study on motion control of mirror milling equipment for large thin-walled parts[D]. Dalian: Dalian University of Technology, 2019: 1-5 (in Chinese).[3] 薛雷, 曾宏伟, 覃程锦, 等. 采用同步压缩变换和能量熵的机器人加工颤振监测方法[J]. 西安交通大学学报, 2019, 53(8): 24-30+89. XUE L, ZENG H W, QIN C J, et al. A chatter monitoring method for robotic machining using synchro-squeezed transform and energy entropy[J]. Journal of Xi’an Jiaotong University, 2019, 53(8): 24-30+89 (in Chinese).[4] 廖文和, 田威, 李波, 等. 机器人精度补偿技术与应用进展[J]. 航空学报, 2022, 43(05): 9-30+2. LIAO W H, TIAN W, LI B, et al. Error compensation technology and its application progress of an industrial robot[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(05): 9-30+2 (in Chinese).[5] 董松, 郑侃, 孟丹, 等. 大型复杂构件机器人制孔技术研究进展[J]. 航空学报, 2022, 43(05): 31-48+2.DONG S, ZHENG K, MENG D, et al. Robot drilling of large complex components: A review[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(05): 31-48+2 (in Chinese). [6] 廖文和, 郑侃, 孙连军, 等. 大型复杂构件机器人加工稳定性研究进展[J]. 航空学报, 2022, 43(01): 164-183. LIAO W H, ZHENG K, SUN L J, et al. Review on chatter stability in robotic machining for large complex components[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(01): 164-183 (in Chinese).[7] 孙红伟, 祝景萍, 郑侃, 等. 机床与机器人旋转超声铣边对比试验研究[J]. 南京理工大学学报, 2022, 46(01): 1-6. SUN H W, ZHU J P, ZHENG K, et al. Comparative experimental research on rotary ultrasonic edge trimming milling of machine tool and robot[J]. Journal of Nanjing University of Science and Technology, 2022, 46(01): 1-6 (in Chinese).[8] ZHANG J L, LIAO W H, ZHAO W, et al. Research on stability of robotic longitudinal-torsional ultrasonic milling with variable cutting force coefficient[J]. The International Journal of Advanced Manufacturing Technology, 2022, 1707-1715.[9] SUN L J, ZHENG K, LIAO W H, et al. Investigation on chatter stability of robotic rotary ultrasonic milling[J]. Robotics and Computer Integrated Manufacturing, 2020, 63: 101911.[10] TLUSTY J. Manufacturing processes and equipment[M]. Upper Saddle River: Prentice Hall, 1999: 223-225.[11] ALTINTAS Y. Manufacturing automation: Metal cutting mechanics, machine tool vibrations, and CNC design[M]. Cambridge: Cambridge University Press, 2012: 145-148.[12] YAO Z, MEI D, CHEN Z. On-line chatter detection and identification based on wavelet and support vector machine[J]. Journal of Materials Processing Technology, 2010, 210(5): 713-719.[13] 张磊, 郑侃, 孙连军, 等. 基于小波包敏感频带选择的复材铣边颤振监测研究[J]. 机械工程学报, 2022, 58(03): 140-148. ZHANG L, ZHENG K, SUN L J, et al. Investigation on milling chatter monitoring based on WPD frequency band selection and frequency elimination algorithm[J]. Journal of Mechanical Engineering (in Chinese).[14] 董辉跃, 吴杨宝, 郭英杰, 等. 机器人精镗飞机交点孔的颤振分析与识别[J]. 浙江大学学报(工学版), 2018, 2(8): 1517-1525. DONG H Y, WU Y B, GUO Y J, et al. Chatter analysis and identification in robotic fine boring of aircraft intersection holes[J]. Journal of Zhejiang University (Engineering Science), 2018, 52(8): 1517-1525 (in Chinese).[15] CHEN F, ZHAO H. Design of eddy current dampers for vibration suppression in robotic milling[J]. Advances in Mechanical Engineering, 2018, 10(11): 1-15.[16] SUN L J, LIAO W H, ZHENG K, et al. Stability analysis of robotic longitudinal-torsional composite ultrasonic milling[J]. Chinese Journal of Aeronautics, 2022, 35(8): 249-264.[17] 郭伟华. 机器人旋转超声铣削铝合金工艺实验研究[D]. 南京: 南京理工大学, 2018: 28-39. GUO W H. Experimental research on rotating ultrasonic milling aluminum alloy by robot[D]. Nanjing: Nanjing University of Science and Technology, 2018: 28-39 (in Chinese).[18] 郑侃, 廖文和, 孙连军, 等. 机器人纵振与纵扭超声铣削稳定性对比研究[J]. 机械工程学报, 2021, 57(7): 10-17. ZHENG K, LIAO W H, SUN L J, et al. Comparative study on stability of robotic longitudinal vibration and longitudinal-torsional ultrasonic milling[J]. Journal of Mechanical Engineering, 2021,57(7): 10-17 (in Chinese). [19] DONG S, ZHENG K, LIAO W H. Stability of lateral vibration in robotic rotary ultrasonic drilling[J]. International Journal of Mechanical Sciences, 2018, 145: 346-352.[20] JI W, WANG L H. Industrial robotic machining: a review[J]. The International Journal of Advanced Manufacturing Technology, 2019, 103(1-4): 1239-1255.[21] KULJANIC E, TOTIS G, SORTINO M. Development of an intelligent multisensor chatter detection system in milling[J]. Mechanical Systems and Signal Processing, 2009, 23(5): 1704-1718.[22] KULJANIC E, SORTINO M, TOTIS G. Multisensor approaches for chatter detection in milling[J]. Journal of Sound and Vibration, 2008, 312(4-5): 672-693.[23] 王志学, 刘献礼, 李茂月, 等. 切削加工颤振智能监控技术[J]. 机械工程学报, 2020, 56(24): 1-23. WANG Z X, LIU X L, LI M Y, et al. Intelligent monitoring and control technology of cutting chatter[J]. Journal of Mechanical Engineering, 2020, 56(24): 1-23 (in Chinese).[24] 董礼仪. 多传感器融合的刀具磨损预测及多工况迁移学习研究[D]. 成都: 电子科技大学, 2020. DONG L Y. Tool wear prediction based on multi-sensor information fusion and transfer learning under multiple operating conditions[D]. Chengdu: University of Electronic Science and Technology of China (in Chinese).[25] 刘明才. 小波分析及其应用[M]. 北京: 清华大学出版社, 2013. LIU M C, Wavelet analysis and its applications. Beijing: Tsinghua University Press,2013 (in Chinese). [26] 李洁平. 铣削加工颤振试验设计及其应用[D]. 武汉:华中科技大学, 2019.LI J P. Design and Application of milling chatter tests[D]. Wuhan: Huazhong University of Science and Technology, 2019 (in Chinese). |