[1] FERRI A. Experimental results with airfoils tested in the high-speed tunnel at Guidonia:NACA-TM-946[R]. Washington, D.C.:NACA, 1940. [2] HUANG W, DU Z B, YAN L, et al. Supersonic mixing in airbreathing propulsion systems for hypersonic flights[J]. Progress in Aerospace Sciences, 2019, 109:100545. [3] HUANG W, DU Z B, YAN L, et al. Flame propagation and stabilization in dual-mode scramjet combustors:A survey[J]. Progress in Aerospace Sciences, 2018, 101:13-30. [4] HUANG W, CHEN Z, YAN L, et al. Drag and heat flux reduction mechanism induced by the spike and its combinations in supersonic flows:A review[J]. Progress in Aerospace Sciences, 2019, 105:31-39. [5] 陶渊.高超声速进气道中激波边界层干扰现象研究[D]. 长沙:国防科技大学,2018:1-13. TAO Y. The study of the shock wave/boundary layer interactions in hypersonic intet[D]. Changsha:National University of Defense Technology, 2018:1-13(in Chinese). [6] 毛宏霞, 贾居红, 傅德彬, 等. HIFiRE-1飞行器激波与边界层干扰气动热研究[J]. 兵工学报, 2018, 39(3):528-536. MAO H X, JIA J H, FU D B, et al. Research on aero thermodynamics and influencing factors for HIFiRE-1[J]. Acta Armamentarii, 2018, 39(3):528-536(in Chinese). [7] ZHU K, JIANG L X, LIU W D, et al. Wall temperature effects on shock wave/turbulent boundary layer interaction via direct numerical simulation[J]. Acta Astronautica, 2021, 178:499-510. [8] PASQUARIELLO V, GRILLI M, HICKEL S, et al. Large-eddy simulation of passive shock-wave/boundary-layer interaction control[J]. International Journal of Heat and Fluid Flow, 2014, 49:116-127. [9] TITCHENER N, BABINSKY H. Shock wave/boundary-layer interaction control using a combination of vortex generators and bleed[J]. AIAA Journal, 2013, 51(5):1221-1233. [10] 王博. 激波/湍流边界层相互作用流场组织结构研究[D]. 长沙:国防科技大学, 2015:75-87. WANG B. The investigation into the shock wave/boundary-layer interaction flow field organization[D]. Changsha:National University of Defense Technology, 2015:75-87(in Chinese). [11] ZHOU Y Y, ZHAO Y L, ZHAO Y X. A study on the separation length of shock wave/turbulent boundary layer interaction[J]. International Journal of Aerospace Engineering, 2019, 2019:8323787. [12] VANSTONE L, MUSTA M N, SECKIN S, et al. Experimental study of the mean structure and quasi-conical scaling of a swept-compression-ramp interaction at Mach 2[J]. Journal of Fluid Mechanics, 2018, 841:1-27. [13] YUE L J, JIA Y N, XU X, et al. Effect of cowl shock on restart characteristics of simple ramp type hypersonic inlets with thin boundary layers[J]. Aerospace Science and Technology, 2018, 74:72-80. [14] FUNDERBURK M L, NARAYANASWAMY V. Investigation of negative surface curvature effects in axisymmetric shock/boundary-layer interaction[J]. AIAA Journal, 2019, 57(4):1594-1607. [15] PASHA A A, JUHANY K A. Effect of wall temperature on separation bubble size in laminar hypersonic shock/boundary layer interaction flows[J]. Advances in Mechanical Engineering, 2019, 11(11):1-10. [16] HUANG R, LI Z F, YANG J M. Engineering prediction of fluctuating pressure over incident shock/turbulent boundary-layer interactions[J]. AIAA Journal, 2019, 57(5):2209-2213. [17] MEIER G, SZUMOWSKI A P, SELEROWICZ W C. Self-excited oscillations in internal transonic flows[J]. Progress in Aerospace Sciences, 1990, 27(2):145-200. [18] HADJADJ A, DUSSAUGE J P. Shock wave boundary layer interaction[J]. Shock Waves, 2009, 19(6):449-452. [19] GAITONDE D V. Progress in shock wave/boundary layer interactions[J]. Progress in Aerospace Sciences, 2015, 72:80-99. [20] PRIEBE S, MARTÍN M P. Low-frequency unsteadiness in shock wave-turbulent boundary layer interaction[J]. Journal of Fluid Mechanics, 2012, 699:1-49. [21] HUANG X, ESTRUCH-SAMPER D. Low-frequency unsteadiness of swept shock-wave/turbulent-boundary-layer interaction[J]. Journal of Fluid Mechanics, 2018, 856:797-821. [22] PASQUARIELLO V, HICKEL S, ADAMS N A. Unsteady effects of strong shock-wave/boundary-layer interaction at high Reynolds number[J]. Journal of Fluid Mechanics, 2017, 823:617-657. [23] CLEMENS N T, NARAYANASWAMY V. Low-frequency unsteadiness of shock wave/turbulent boundary layer interactions[J]. Annual Review of Fluid Mechanics, 2014, 46(1):469-492. [24] KNIGHT D, MORTAZAVI M. Hypersonic shock wave transitional boundary layer interactions-A review[J]. Acta Astronautica, 2018, 151:296-317. [25] VYAS M A, YODER D A, GAITONDE D V. Reynolds-stress budgets in an impinging shock-wave/boundary-layer interaction[J]. AIAA Journal, 2019, 57(11):4698-4714. [26] HAO J A, WEN C Y. Effects of vibrational nonequilibrium on hypersonic shock-wave/laminar boundary-layer interactions[J]. International Communications in Heat and Mass Transfer, 2018, 97:136-142. [27] 孙东, 刘朋欣, 童福林. 展向振荡对激波/湍流边界层干扰的影响[J]. 航空学报, 2020, 41(12):124054. SUN D, LIU P X, TONG F L. Effect of spanwise oscillation on interaction of shock wave and turbulent boundary layer[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(12):124054(in Chinese). [28] HARLOFF G J, SMITH G E. Supersonic-inlet boundary-layer bleed flow[J]. AIAA Journal, 1996, 34(4):778-785. [29] ZHANG B H, ZHAO Y X, LIU J. Effects of bleed hole size on supersonic boundary layer bleed mass flow rate[J]. Journal of Zhejiang University-SCIENCE A, 2020, 21(8):652-662. [30] SLATER J W. Improvements in modeling 90-degree bleed holes for supersonic inlets[J]. Journal of Propulsion and Power, 2012, 28(4):773-781. [31] BRUCE P J K, COLLISS S P. Review of research into shock control bumps[J]. Shock Waves, 2015, 25(5):451-471. [32] ZHANG Y, TAN H J, TIAN F C, et al. Control of incident shock/boundary-layer interaction by a two-dimensional bump[J]. AIAA Journal, 2014, 52(4):767-776. [33] ZHANG Y, TAN H J, LI J F, et al. Control of cowl-shock/boundary-layer interactions by deformable shape-memory alloy bump[J]. AIAA Journal, 2018, 57(2):696-705. [34] 邓维鑫, 杨顺华, 张弯洲, 等. 高超声速流动的气体吹除控制方法研究[J]. 推进技术, 2017, 38(4):759-763. DENG W X, YANG S H, ZHANG W Z, et al. Study on air blowing control method for hypersonic flow[J]. Journal of Propulsion Technology, 2017, 38(4):759-763(in Chinese). [35] CHIDAMBARANATHAN M, VERMA S B, RATHAKRISHNAN E. Control of incident shock-induced boundary-layer separation using steady micro-jet actuators at M∞=3.5[J]. Proceedings of the Institution of Mechanical Engineers, Part G:Journal of Aerospace Engineering, 2019, 233(4):1284-1306. [36] SHARMA V, ESWARAN V, CHAKRABORTY D. Determination of optimal spacing between transverse jets in a SCRAMJET engine[J]. Aerospace Science and Technology, 2020, 96:105520. [37] VERMA S B, MANISANKAR C. Control of compression-ramp-induced interaction with steady microjets[J]. AIAA Journal, 2019, 57(7):2892-2904. [38] VERMA S B, MANISANKAR C, AKSHARA P. Control of shock-wave boundary layer interaction using steady micro-jets[J]. Shock Waves, 2015, 25(5):535-543. [39] LIU Y M, ZHANG H, LIU P C. Flow control in supersonic flow field based on micro jets[J]. Advances in Mechanical Engineering, 2019, 11(1):1-15. [40] JIANG H, LIU J, LUO S C, et al. Hypersonic flow control of shock wave/turbulent boundary layer interactions using magnetohydrodynamic plasma actuators[J]. Journal of Zhejiang University-SCIENCE A, 2020, 21(9):745-760. [41] 苏纬仪, 陈立红, 张新宇. MHD控制激波诱导湍流边界层分离的机理分析[J]. 推进技术, 2010, 31(1):18-23. SU W Y, CHEN L H, ZHANG X Y. Investigation of magnetohydrodynamic control on turbulent boundary layer separation induced by shock wave[J]. Journal of Propulsion Technology, 2010, 31(1):18-23(in Chinese). [42] ZHANG Y C, TAN H J, HUANG H X, et al. Transient flow patterns of multiple plasma synthetic jets under different ambient pressures[J]. Flow, Turbulence and Combustion, 2018, 101(3):741-757. [43] NARAYANASWAMY V, RAJA L L, CLEMENS N T. Control of unsteadiness of a shock wave/turbulent boundary layer interaction by using a pulsed-plasma-jet actuator[J]. Physics of Fluids, 2012, 24(7):076101. [44] HUANG H X, TAN H J, SUN S, et al. Letter:Transient interaction between plasma jet and supersonic compression ramp flow[J]. Physics of Fluids, 2018, 30(4):041703. [45] PEAKE D, HENRY F, PEARCEY H. Viscous flow control with air-jet vortex generators:AIAA-1999-3175[R]. Reston:AIAA, 1999. [46] 张悦, 谭慧俊, 王子运, 等. 进气道内激波/边界层干扰及控制研究进展[J]. 推进技术, 2020, 41(2):241-259. ZHANG Y, TAN H J, WANG Z Y, et al. Progress of shock wave/boundary layer interaction and its control in inlet[J]. Journal of Propulsion Technology, 2020, 41(2):241-259(in Chinese). [47] BABINSKY H, LI Y, FORD C W P. Microramp control of supersonic oblique shock-wave/boundary-layer interactions[J]. AIAA Journal, 2009, 47(3):668-675. [48] FORD C P, BABINSKY H. Micro-ramp control for oblique shock wave/boundary layer interactions:AIAA-2007-4115[R]. Reston:AIAA, 2007. [49] BLINDE P L, HUMBLE R A, OUDHEUSDEN B W, et al. Effects of micro-ramps on a shock wave/turbulent boundary layer interaction[J]. Shock Waves, 2009, 19(6):507-520. [50] SHINN A, VANKA S, MANI M R, et al. Application of BCFD unstructured grid solver to simulation of micro-ramp control of shock/boundary layer interactions:AIAA-2007-3914[R]. Reston:AIAA, 2007. [51] ZHANG Y, TAN H J, DU M C, et al. Control of shock/boundary-layer interaction for hypersonic inlets by highly swept microramps[J]. Journal of Propulsion and Power, 2014, 31(1):133-143. [52] 张悦, 高婉宁, 程代姝. 基于记忆合金的可变形涡流发生器控制唇罩激波/边界层干扰研究[J]. 推进技术, 2018, 39(12):2755-2763. ZHANG Y, GAO W N, CHENG D S. Control of cowl shock/boundary layer interaction by variable microramps based on shape memory alloy[J]. Journal of Propulsion Technology, 2018, 39(12):2755-2763(in Chinese). [53] YAN Y H, CHEN C X, WANG X, et al. LES and analyses on the vortex structure behind supersonic MVG with turbulent inflow[J]. Applied Mathematical Modelling, 2014, 38(1):196-211. [54] KAUSHIK M. Experimental studies on micro-vortex generator controlled shock/boundary-layer interactions in Mach 2.2 intake[J]. International Journal of Aeronautical and Space Sciences, 2019, 20(3):584-595. [55] VERMA S B, MANISANKAR C. Assessment of various low-profile mechanical vortex generators in controlling a shock-induced separation[J]. AIAA Journal, 2017, 55(7):2228-2240. [56] WANG B, LIU W D, ZHAO Y X, et al. Experimental investigation of the micro-ramp based shock wave and turbulent boundary layer interaction control[J]. Physics of Fluids, 2012, 24(5):055110. [57] BAGHERI H, MIRJALILY S A A, OLOOMI S A A, et al. Effects of micro-vortex generators on shock wave structure in a low aspect ratio duct, numerical investigation[J]. Acta Astronautica, 2021, 178:616-624. [58] 赵永胜,张黄伟,张江.动态微涡流发生器对激波/边界层干扰的影响研究[J/OL].推进技术,(2020-12-03)[2021-03-09]. https://doi.org/10.13675/j.cnki.tjjs.200305. ZHAO Y S,ZHANG H W,ZHANG J. Effects of dynamic micro vortex generator on shock wave boundary layer interactions[J/OL]. Journal of Propulsion Technology, (2020-12-03)[2021-03-09]. https://doi.org/10.13675/j.cnki.tjjs.200305(in Chinese). [59] ESTRUCH-SAMPER D, VANSTONE L, HILLIER R, et al. Micro vortex generator control of axisymmetric high-speed laminar boundary layer separation[J]. Shock Waves, 2015, 25(5):521-533. [60] MARTIS R R, MISRA A, SINGH A. Effect of microramps on separated swept shock wave-boundary-layer interactions[J]. AIAA Journal, 2014, 52(3):591-603. [61] GAGEIK M, NIES J, KLIOUTCHNIKOV I, et al. Pressure wave damping in transonic airfoil flow by means of micro vortex generators[J]. Aerospace Science and Technology, 2018, 81:65-77. [62] KOIKE S, BABINSKY H. Vortex generators for corner separation caused by shock-wave/boundary-layer interactions[J]. Journal of Aircraft, 2018, 56(1):239-249. [63] GAO L Y, ZHANG H, LIU Y Q, et al. Effects of vortex generators on a blunt trailing-edge airfoil for wind turbines[J]. Renewable Energy, 2015, 76:303-311. [64] HUANG J B, XIAO Z X, FU S, et al. Study of control effects of vortex generators on a supercritical wing[J]. Science China Technological Sciences, 2010, 53(8):2038-2048. [65] ZHANG Y J, LIU W D, WANG B, et al. Effects of micro-ramp on transverse jet in supersonic crossflow[J]. Acta Astronautica, 2016, 127:160-170. |