[1] HE K M, ZHANG X Y, REN S Q, et al. Deep residual iearning for image recognition[C]//Proceeding of IEEE conference on computer vision and pattern recognition. Piscataway:IEEE Press, 2016:770-778. [2] REN S Q, HE K M, GIRSHICK R, et al. Faster RCNN:Towards real-time object detection with region proposal networks[C]//In Advances in Neural Information Processing Systems.Piscataway:IEEE Press, 2015:91-99. [3] CHEN L C, PAPANDREOU G, KOKKINOS I, et al. Deeplab:Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017,40(4):834-848. [4] 纪荣嵘, 林绍辉, 晁飞, 等. 深度神经网络压缩与加速综述[J]. 计算机研究与发展, 2018, 55(9):1871-1888. JI R R, LIN S H, CHAO F, et al. Deep neural network compression and acceleration:A review[J]. Journal of Computer Research and Development, 2018, 55(9):1871-1888(in Chinese). [5] 雷杰, 高鑫, 宋杰, 等. 深度网络模型压缩综述[J]. 软件学报, 2018, 29(2):251-266. LEI J, GAO X, SONG J, et al. Survey of deep neural network model compression[J]. Journal of Software, 2018, 29(2):251-266(in Chinese). [6] 李江昀, 赵义凯, 薛卓尔, 等. 深度神经网络模型压缩综述[J]. 工程科学学报, 2019, 41(10):1229-1239. LI J Y, ZHAO Y K, XUE Z E, et al. A survey of model compression for deep neural networks[J]. Chinese Journal of Engineering, 2019, 41(10):1229-1239(in Chinese). [7] 曹文龙, 芮建武, 李敏. 神经网络模型压缩方法综述[J]. 计算机应用研究, 2019, 36(3):649-656. CAO W L, RUI J W, LI M. Summary of neural network model compression methods[J]. Application Research of Computers, 2019, 36(3):649-656(in Chinese). [8] 耿丽丽, 牛保宁. 深度神经网络模型压缩综述[J]. 计算机科学与探索, 2020, 14(9):1-16. GENG L L, NIU B N. Survey of deep neural networks model compression[J]. Journal of Frontiers of Computer Science & Technology, 2020, 14(9):1-16(in Chinese). [9] 张弛, 田锦, 王永森, 等. 神经网络模型压缩方法综述[C]//中国计算机用户协会网络应用分会2018年第二十二届网络新技术与应用年会论文集, 2018. ZHANG C, TIAN J, WANG Y S, et al. Overview of neural network model compression methods[C]//Proceedings of the 22nd Annual Conference of New Network Technologies and Applications in 2018 of the Network Application Branch of China Computer Users Association, 2018(in Chinese). [10] 蔡瑞初, 钟椿荣, 余洋, 等. 面向"边缘"应用的卷积神经网络量化与压缩方法[J]. 计算机应用, 2018, 38(9):2449-2454. CAI R C, ZHONG C R, YU Y, et al. CNN quantization and compression strategy for edge computing applications[J]. Journal of Computer Applications, 2018, 38(9):2449-2454(in Chinese). [11] 袁庆祝. 基于CNN卷积神经网络的图像压缩技术[D]. 兰州:兰州大学, 2019. YUAN Q Z. Image compression technology based on CNN convolutional neural network[D]. Lanzhou:Lanzhou University, 2019(in Chinese). [12] RASTEGARI M, ORDONEZ V, REDMON J, et al. XNOR-Net:ImageNet classification using binary convolutional neural networks[C]//In Proceedings of the European Conference on Computer Vision, 2016:525-542. [13] LIU Z C, WU B Y, LUO W H, et al. Bi-Real Net:Enhancing the performance of 1-bit CNNs with improved representational capability and advanced training algorithm[C]//Proceedings of the European Conference on Computer Vision, 2018:722-737. [14] HOU L, YAO Q M, KWOK J T. Loss-aware binarization of deep convolutional networks[C]//Proceedings of the International Conference on Learning Representations, 2017. [15] LI Z, NI B, ZHANG W, et al. Performance guaranteed network acceleration via high-order residual quantization[C]//Proceedings of IEEE International Conference on Computer Vision. Piscataway:IEEE Press, 2017. [16] GU J X, LI C, ZHANG B C, et al. Projection convolutional neural networks for 1-bit CNNs via discrete back propagation[C]//Proceeding of the Conference of Association for the Advance of Artificial Intelligence, 2019:8344-8351. [17] COURBARIAUX M, HUBARA I, SOUDRY D, et al. Binarized neural networks:Training deep neural networks with weights and activations constrained to +1 or -1[DB/OL]. arXiv preprint:1602.02830, 2016. [18] MARTINEZ B, YANG J, BULAT A, et al. Training binary neural networks with real-to-binary convolutions[C]//Proceedings of the International Conference on Learning Representations, 2020. [19] DARABI S, BELBAHRI M, COURVARIAUX M, et al. BNN+:Improved binary network training[C]//NeurIPS Workshop on Energy Efficient Machine Learning and Cognitive Computing, 2019. [20] LIU C L, DING W R, XIA X, et al. Circulant binary convolutional networks:Enhancing the performance of 1-bit DCNNs with circulant back propagation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE Press, 2019:2691-2699. [21] ZHUANG B, SHEN C, TAN M, et al. Structured binary neural networks for accurate image classification and semantic segmentation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE Press, 2019:413-422. [22] KIM H, KIM K, KIM J, et al. BinaryDuo:Reducing gradient mismatch in binary activation network by coupling binary activations[C]//Proceedings of the International Conference on Learning Representations, 2020. [23] DING R Z, CHIN T W, LIU Z Y, et al. Regularizing activation distribution for training binarized deep networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE Press, 2019:11400-11409. [24] LIU Z C, SHEN Z Q, SAVVIDES M, et al. Reactnet:Towards precise binary neural network with generalized activation functions[C]//Proceedings of the European Conference on Computer Vision, 2020. [25] GU J X, ZHAO J H, JIANG X L, et al. Bayesian optimized 1-bit CNNs[C]//Proceedings of the IEEE International Conference on Computer Vision. Piscataway:IEEE Press, 2019:4908-4916. [26] ZHUANG B H, SHEN C H, TAN M K, et al. Towards effective low-bitwidth convolutional neural networks[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. Piscataway:IEEE Press, 2018:7920-7928. [27] MISHRA A, MARR D. Apprentice:Using knowledge distillation techniques to improve low-precision network accuracy[C]//International Conference on Learning Representations. Piscataway:IEEE Press, 2018. [28] LIU C L, DING W R, XIA X, et al. RBCN:Rectified binary convolutional networks for enhancing the performance of 1-bit DCNNs[C]//Proceeding of International Joint Conference on Artificial Intelligence, 2019. [29] ZHOU S C, WU Y X, NI Z K, et al. Dorefa-net:Training low bitwidth convolutional neural networks with low bitwidth gradients[DB/OL].arXiv preprint:1606.06160, 2016. [30] Nihui, BUG1989, Howave, gemfield, Corea, and eric612.ncnn[EB/OL].[2020-06-15]. https://github.com/Tencent/ncnn. [31] QIN H T, GONG R H, LIU X L, et al. Forward and backward information retention for accurate binary neural networks[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE Press, 2020:2250-2259. [32] WANG Z W, WU Z Y, LU J W, et al. BiDet:An efficient binarized object detector[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE Press, 2020. [33] LIU H X, SIMONYAN K, YANG Y M. Darts:Differentiable architecture search[DB/OL]. arXiv preprint:1806.09055, 2018. [34] CHEN H L, ZHUO L A, ZHANG B C, et al. Binarized neural architecture search[C]//Proceeding of the Conference of Association for the Advance of Artificial Intelligence, 2020. [35] SHEN M Z, HAN K, XU C J, et al. Searching for accurate binary neural architectures[C]//Proceedings of the IEEE International Conference on Computer Vision Workshops. Piscataway:IEEE Press, 2019. [36] HELWEGEN K, WIDDICOMBE J, GEIGER L, et al. Latent weights do not exist:Rethinking binarized neural network optimization[C]//Proceeding of the Conference of Advances in Neural Information Processing Systems, 2019:7531-7542. [37] FRIESEN L A, DOMINGOS P. Deep learning as a mixed convex-combinatorial optimization problem[C]//Proceeding of the International Conference on Learning Representations, 2018. [38] LECUN Y, BOTTOU L, BENGIO Y, et al. Gradient-based learning applied to document recognition[C]//Proceedings of the IEEE. Piscataway:IEEE Press, 1998:2278-2324. [39] NETZER Y, WANG T, COATES A, et al. Reading digits in natural images with unsupervised feature learning[C]//Proceeding of Neural Information Processing Systems Workshop, 2011. [40] KRIZHEVSKY N, HINTON. The Cifar-10 Dataset[EB/OL].[2020-06-15]. http://www.cs.toronto.edu/kriz/cifar.html. [41] DENG J, DONG W, SOCHER R, et al. Imagenet:A large-scale hierarchical image database[C]//Proceeding of IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE Press, 2009:248-255. [42] EVERINGHAM M, GOOL L V, WILLIAMS C K, et al. The pascal Visual Object Classes (VOC) challenge[J]. International Journal of Computer Vision, 2010, 88(2):303-338. [43] LIN S Y, MAIRE M, BELONGIE S, et al. Microsoft COCO:Common objects in context[C]//Proceedings of the European Conference on Computer Vision, 2014:740-755. [44] BULAT A, TZIMIROPOULOS G. XNOR-net++:Improved binary neural networks[C]//Proceeding of the British Machine Vision Conference, 2019. [45] WANG Z W, LU J W, TAO C X, et al. Learning channel-wise interactions for binary convolutional neural networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE Press, 2019:568-577. [46] LIN X F, ZHAO C, PAN W. Towards accurate binary convolutional neural network[C]//Proceeding of the Conference of Advances in Neural Information Processing Systems, 2017. [47] GEIGER A, LENZ P, STILLER C, et al. Vision meetsrobotics:The KITTI dataset[J]. The International Journal of Robotics Research, 2013, 32(11):1231-1237. [48] 胡骏飞, 文志强, 谭海湖. 基于二值化卷积神经网络的手势分类方法研究[J]. 湖南工业大学学报, 2017, 31(1):75-80. HU J F, WEN Z Q, TAN H H. Research on gesture classification method based on binary convolutional neural network[J]. Journal of Hunan University of Technology, 2017, 31(1):75-80(in Chinese). [49] FEIST T. Vivado design suite[EB/OL].[2020-06-15]. https://core.ac.uk/display/23362209. [50] QIN H T, GONG R H, LIU X L, Bai X, et al. Binary neural networks:A survey[J]. Pattern Recognition, 2020, 105:107281. [51] YANG H J, FRITZSCHE M, BARTZ C, et al. Bmxnet:An open-source binary neural network implementation based on MXNet[C]//Proceedings of the ACM Multimedia Conference, 2017. [52] ZHAO T L, HE X Y, CHENG J, et al. Bitstream:Efficient computing architecture for real-time low-power inference of binary neural networks on CPUs[C]//Proceedings of the ACM Multimedia Conference, 2018:1545-1552. [53] HU Y W, ZHAI J D, LI D H, et al. BitFlow:Exploiting vector parallelism for binary neural networks on CPU[C]//Proceeding of IEEE International Parallel and Distributed Processing Symposium. Piscataway:IEEE Press, 2018:244-253. [54] ZHANG J H, PAN Y W, YAO T, et al. DABNN:A super fast inference framework for binary neural networks on ARM devices[C]//Proceeding of ACM Multimedia Conference. New York:ACM, 2019. [55] GONG R H, LIU X L, JIANG S H, et al. Differentiable soft quantization:bridging full-precision and low-bit neural networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE Press, 2019. |