航空学报 > 2023, Vol. 44 Issue (18): 128318-128318   doi: 10.7527/S1000-6893.2022.28318

介电弹性薄膜翼型的增升效应机理

康伟(), 胡仕林, 王彦清   

  1. 西北工业大学 航天学院,西安 710072
  • 收稿日期:2022-11-28 修回日期:2022-12-13 接受日期:2022-12-26 出版日期:2023-09-25 发布日期:2022-12-27
  • 通讯作者: 康伟 E-mail:wkang@nwpu.edu.cn
  • 基金资助:
    国家自然科学基金(11972307);基础科研基金(JCKY2021204B141)

Lift enhancement mechanism of dielectric elastic membrane airfoil

Wei KANG(), Shilin HU, Yanqing WANG   

  1. School of Astronautics,Northwestern Polytechnical University,Xi’an 710072,China
  • Received:2022-11-28 Revised:2022-12-13 Accepted:2022-12-26 Online:2023-09-25 Published:2022-12-27
  • Contact: Wei KANG E-mail:wkang@nwpu.edu.cn
  • Supported by:
    National Natural Science Foundation of China(11972307);Fundamental Research Foundation(JCKY2021204B141)

摘要:

蝙蝠在低雷诺数飞行状态能够通过膜翼的主动变形使其获得高机动性和飞行效率。这种翼型主动变形的仿生特性为智能飞行器气动与控制设计提供了新的思路。本文将介电弹性高聚合物材料直接应用到了翼型的设计中,利用介电弹性体电致变形的特点提出了具有主动控制功能的介电弹性薄膜翼型。针对电活性材料结构的力学特性,引入热力学理论框架,描述力-电耦合效应。采用CFD/CSD耦合技术建立基于介电弹性聚合物材料的气动-结构-电磁耦合动力学模型,并对所提方法进行验证。研究结果表明,介电弹性薄膜翼型在攻角为14°时相对刚性翼型增升12.33%,且翼型弯度变形与振动效应对增升的贡献比为3∶2;当外加电压使得流场频率与振动频率在前两阶频率相同,且二阶主频率不小于刚性翼型流场二阶主频时,介电弹性薄膜翼型的增升效应高于10%。所提方法与研究结论为研发智能飞行器的气动分析与控制设计提供了重要的技术支撑。

关键词: 介电弹性薄膜翼型, 多物理场耦合, CFD/CSD耦合, 流动控制, 增升效应

Abstract:

Active morphing of bat wings can gain high maneuverability and efficiency in low Reynolds number flow, offering a novel aerodynamic design concept for smart aerocraft. Here, the dielectric elastic high polymer material is directly applied to the design of airfoil. A dielectric elastic membrane airfoil with semi-active control function is proposed based on the aero-electro-structural behaviors of dielectric elastic polymer actuators. The dynamic modeling of membrane wings is established according to the thermodynamics theory to describe complex electromechanical behaviors. As for fluid, a high-fidelity aero-electromagnetic-structural coupling model of the membrane wings is established using the high-precision CFD/CSD coupling technique and is verified afterwards. The results show that the lift of the dielectric elastic membrane airfoil under passive control is 12.33% higher than that of the rigid airfoil at an angle of attack of 14°, and that the contribution ratio of the cambered deformation and vibration effect of the airfoil to the lift enhancement is 3∶2. The dielectric elastic membrane airfoil under semi-active control shows a lift enhancement of more than 10% only at a specific voltage. The methods proposed and research conclusions will provide important technical support for aerodynamics and control design of smart aero-vehicles.

Key words: dielectric elastic membrane airfoil, multiphysical coupling, CFD/CSD coupling, flow control, lift enhancement effect

中图分类号: