航空学报 > 2021, Vol. 42 Issue (1): 523877-523877   doi: 10.7527/S1000-6893.2020.23877

基于动力学RRT*的自由漂浮空间机器人轨迹规划

葛佳昊, 刘莉, 董欣心, 田维勇, 陆天和   

  1. 北京理工大学 宇航学院, 北京 100081
  • 收稿日期:2020-02-15 修回日期:2020-03-08 发布日期:2020-06-12
  • 通讯作者: 刘莉 E-mail:liuli@bit.edu.cn

Trajectory planning for free floating space robots based on kinodynamic RRT*

GE Jiahao, LIU Li, DONG Xinxin, TIAN Weiyong, LU Tianhe   

  1. School of Aerospace Engineering, Beijing Institute of Technology, Beijing 100081, China
  • Received:2020-02-15 Revised:2020-03-08 Published:2020-06-12

摘要: 针对自由漂浮空间机器人(FFSR)轨迹规划问题,提出了一种基于动力学RRT*算法的FFSR轨迹规划方法。首先,建立了FFSR的运动学与动力学模型,将系统模型伪线性重构为状态空间模型,并设计了考虑位姿调整时长和能量消耗的加权目标函数;然后,针对机械手初末位置间的障碍,简化避障方法,提出了机械臂避障与机械手避障两层次避障策略,提高碰撞检测效率;接着,给出了多体系统的动力学RRT*逼近最优轨迹的方法;最后,为验证算法有效性并不失一般性,选取平面2连杆FFSR模型进行数值仿真并用经典RRT*算法和高斯伪谱法与之对比。仿真结果表明,该方法能够以较快的速度生成可行的机器人移动轨迹。

关键词: 自由漂浮空间机器人, 多目标规划, 轨迹规划, 动力学RRT*, 障碍规避

Abstract: Aiming at the problem of trajectory planning for the Free Floating Space Robot (FFSR), this paper proposes an FFSR trajectory planning method based on the kinodynamic RRT* algorithm. The kinematics and dynamics model of the FFSR is first established with the pseudo linear system model reconstructed into the state space model and a weighted objective function designed considering both time and energy consumption of posture adjustment. Secondly, considering the obstacles between the initial and final positions of the manipulator, we propose a simplified obstacle avoidance method, formulating a two-level obstacle avoidance strategy for robotic arms and the manipulator to improve the collision detection efficiency. The kinodynamic RRT* approach to the optimal trajectory is presented. Finally, to verify the effectiveness of the algorithm without generality loss, the 2-degree of freedom FFSR model is selected for numerical simulation. The classic RRT* algorithm and Gauss pseudo-spectral method are used for comparison. The simulation results show that the method can generate feasible robot trajectories with fewer iterations.

Key words: free floating space robots, multi-objective planning, trajectory planning, kinodynamic RRT*, obstacle avoidance

中图分类号: