[1] 赵汉元. 飞行器再入动力学和制导[M]. 长沙:国防科技大学出版社, 1997:11-17. ZHAO H Y. Aircraft reentry dynamics and guidance[M]. Changsha:National University of Defense Technology Press, 1997:11-17(in Chinese). [2] 王大轶, 郭敏文. 航天器大气进入过程制导方法综述[J]. 宇航学报, 2015, 36(1):1-8. WANG D Y, GUO M W. Review of spacecraft entry guidance[J]. Journal of Astronautics, 2015, 36(1):1-8(in Chinese). [3] 田栢苓, 李智禹, 吴思元, 等. 可重复使用运载器再入轨迹与制导控制方法综述[J]. 航空学报, 2020, 41(11):624072. TIAN B L, LI Z Y, WU S Y, et al. Reentry trajectory optimization, guidance and control methods for reusable launch vehicles:Review[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(11):624072(in Chinese). [4] 张远龙, 谢愈. 滑翔飞行器弹道规划与制导方法综述[J]. 航空学报, 2020, 41(1):023377. ZHANG Y L, XIE Y. Review of trajectory planning and guidance methods for gliding vehicles[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(1):023377(in Chinese). [5] 穆凌霞, 王新民, 谢蓉, 等. 高超音速飞行器及其制导控制技术综述[J]. 哈尔滨工业大学学报, 2019, 51(3):1-14. MU L X, WANG X M, XIE R, et al. A survey of the hypersonic flight vehicle and its guidance and control technology[J]. Journal of Harbin Institute of Technology, 2019, 51(3):1-14(in Chinese). [6] LI S, JIANG X Q. Review and prospect of guidance and control for Mars atmospheric entry[J]. Progress in Aerospace Sciences, 2014, 69:40-57. [7] 李毛毛. 飞行器进入与返回自适应制导方法研究[D].北京:中国空间技术研究院,2018:122-124. LI MM. The study on adaptive guidance methods of aerocraft entry and return[D]. Beijing:Chinese Academy of Space Technology,2018:122-124(in Chinese). [8] 胡军. 自适应预测制导:一种统一的制导方法[J]. 空间控制技术与应用, 2019, 45(4):53-63. HU J. Adaptive predictive guidance:A unified guidance method[J]. Aerospace Control and Application, 2019, 45(4):53-63(in Chinese). [9] 王希季. 航天器进入与返回技术-上册[M]. 北京:宇航出版社, 1991:20-30. WANG X J. Spacecraft entry and return technology[M].Beijing:Astronautic Press, 1991:20-30(in Chinese). [10] KRANZUSCH K M. Abort determination with non-adaptive neural networks for the Mars precision landers[J]. Acta Astronautica, 2008, 62(1):79-90. [11] 杨俊春, 倪茂林, 胡军. 基于强跟踪滤波器的再入飞行器制导律设计[J]. 系统仿真学报, 2007, 19(11):2535-2538. YANG J C, NI M L, HU J. Design of entry guidance based on strong tracking filter for reentry spacecraft[J]. Journal of SystemSimulation, 2007, 19(11):2535-2538(in Chinese). [12] WINGROVE R C. Survey of atmosphere re-entry guidance and control methods[J]. AIAA Journal, 1963,1(9):2019-2029. [13] ROENNEKE A J, CORNWELL P J. Trajectory control for a low-lift re-entry vehicle[J]. Journal of Guidance, Control, and Dynamics, 1993, 16(5):927-933. [14] ROENNEKE A, WELL K. Nonlinear drag-tracking control applied to optimal low-liftreentry guidance[C]//Guidance, Navigation, and Control Conference. Reston:AIAA, 1996. [15] LU P. Nonlinear trajectory tracking guidance with application to a launch vehicle[J]. Journal of Guidance, Control, and Dynamics, 1996, 19(1):99-106. [16] LU P. Regulation about time-varying trajectories:precision entry guidance illustrated[J]. Journal of Guidance, Control, and Dynamics, 1999, 22(6):784-790. [17] MEASE K D, CHEN D T, TEUFEL P, et al. Reduced-order entry trajectory planning for acceleration guidance[J]. Journal of Guidance, Control, and Dynamics, 2002, 25(2):257-266. [18] TALOLE S, BENITO J, MEASE K. Sliding mode observer for drag tracking in entry guidance[C]//AIAA Guidance, Navigation and Control Conference and Exhibit. Reston:AIAA, 2007. [19] RESTREPO C, VALASEK J. Structured adaptive model inversion controller for Mars atmospheric flight[J]. Journal of Guidance, Control, and Dynamics, 2008, 31(4):937-953. [20] 杜昕, 刘会龙, 黄悦琛. 探月返回跳跃式再入标称轨迹制导律[J]. 载人航天, 2016, 22(6):766-773. DU X, LIU H L, HUANG Y C. Skip entry guidance using a reference trajectory for lunar module[J]. Manned Spaceflight, 2016, 22(6):766-773(in Chinese). [21] 李昭莹, 张冉, 李惠峰. RLV轨迹在线重构与动态逆控制跟踪[J]. 宇航学报, 2015, 36(2):196-202. LI Z Y, ZHANG R, LI H F. On-board trajectory reconfiguration and dynamic inverse tracking control for RLV[J]. Journal of Astronautics, 2015, 36(2):196-202(in Chinese). [22] ZHU J W, ZHANG S X. Adaptive optimal gliding guidance independent of QEGC[J]. Aerospace Science and Technology, 2017, 71:373-381. [23] YAN H, WANG X H, HE Y Z, et al. Reduced-order observer-based robust drag-tracking guidance for uncertain entry vehicles[J]. International Journal of Robust and Nonlinear Control, 2020, 30(13):4906-4923. [24] 沈作军, 朱国栋. 基于轨迹线性化控制的再入轨迹跟踪制导[J]. 北京航空航天大学学报, 2015, 41(11):1975-1982. SHEN Z J, ZHU G D. Trajectory linearization control based tracking guidance design for entry flight[J]. Journal of Beijing University of Aeronautics and Astronautics, 2015, 41(11):1975-1982(in Chinese). [25] ROENNEKE A. Adaptive on-board guidance for entryvehicles[C]//AIAA Guidance, Navigation, and Control Conference and Exhibit. Reston:AIAA, 2001. [26] SHEN Z J, LU P.Onboard generation of three-dimensional constrained entry trajectories[J]. Journal of Guidance, Control, and Dynamics, 2003, 26(1):111-121. [27] SARAF A, LEAVITT J A, CHEN D T, et al. Design and evaluation of an acceleration guidance algorithm for entry[J]. Journal of Spacecraft and Rockets, 2004, 41(6):986-996. [28] LEAVITT J A, MEASE K D. Feasible trajectory generation for atmospheric entry guidance[J]. Journal of Guidance, Control, and Dynamics, 2007, 30(2):473-481. [29] 李俊, 江振宇. 一种高超声速滑翔再入在线轨迹规划算法[J]. 北京航空航天大学学报, 2020, 46(3):579-587. LI J, JIANG Z Y. Online trajectory planning algorithm for hypersonic glide re-entry problem[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(3):579-587(in Chinese). [30] 呼卫军, 周军, 常晶, 等. RLV应急再入轨迹规划问题的动态伪谱法求解[J]. 宇航学报, 2015, 36(11):1255-1261. HU W J, ZHOU J, CHANG J, et al. Emergency reentry trajectory planning for reusable launch vehicle based on dynamic gauss pseudo-spectral[J]. Journal of Astronautics, 2015, 36(11):1255-1261(in Chinese). [31] 卢宝刚, 傅瑜, 崔乃刚, 等. 基于拟平衡滑翔的数值预测再入轨迹规划算法[J]. 哈尔滨工业大学学报, 2015, 47(1):14-19. LU B G, FU Y, CUI N G, et al. Numerical prediction method of reentry trajectory planning based on quasi equilibrium glide condition[J]. Journal of Harbin Institute of Technology, 2015, 47(1):14-19(in Chinese). [32] SAGLIANO M, MOOIJ E, THEIL S. Onboard trajectory generation for entry vehicles via adaptive multivariate pseudospectral interpolation[J]. Journal of Guidance, Control, and Dynamics, 2016, 40(2):466-476. [33] LIU X F, SHEN Z J, LU P. Entry trajectory optimization by second-order cone programming[J]. Journal of Guidance, Control, and Dynamics, 2015, 39(2):227-241. [34] YEO B P, SNG K B. Numerical solution of the constrained reentry vehicle trajectory problem via quasilinearization[J]. Journal of Guidance and Control, 1980, 3(5):392-397. [35] PAN L, PENG S C, XIE Y, et al. 3D guidance for hypersonic reentry gliders based on analytical prediction[J]. Acta Astronautica, 2020, 167:42-51. [36] LI MM, HU J, HUANG H. A segmented and weighted adaptive predictor-corrector guidance method for the ascent phase of hypersonic vehicle[J]. Aerospace Science and Technology, 2020, 106:106231. [37] CHAMAN P W, MOONAN P J. Analysis and evaluation of a proposed method for inertial reentry guidance of a deep space vehicle[C]//Proceedings of the IRE National Aerospace Electronics Conference, 1962. [38] 胡军, 张钊. 载人登月飞行器高速返回再入制导技术研究[J]. 控制理论与应用, 2014, 31(12):1678-1685. HU J, ZHANG Z. A study on the reentry guidance for a manned lunar return vehicle[J]. Control Theory & Applications, 2014, 31(12):1678-1685(in Chinese). [39] 胡军. 载人飞船全系数自适应再入升力控制[J]. 宇航学报, 1998, 19(1):8-12. HU J. All coefficients adaptive reentry lifting control of manned spacecraft[J]. Journal of Astronautics, 1998, 19(1):8-12(in Chinese). [40] 吴宏鑫, 胡军, 解永春. 基于特征模型的智能自适应控制[M]. 合肥:中国科学技术出版社, 2009:1-10. WU H X, HU J, XIE Y C. Characteristic model-based intelligent adaptive control[M]. Beijing:China Science and Technology Press, 2009:1-10(in Chinese). [41] 郭敏文. 小升阻比航天器进入制导方法研究[D]. 北京:中国空间技术研究院, 2014:78-90. GUO M W. On entry guidance algorithm for spacecrafts with low lift-to-drag ratios[D]. Beijing:Chinese Academy of Space Technology,2014:78-90(in Chinese). [42] XUE S B, LU P. Constrained predictor-corrector entry guidance[J]. Journal of Guidance, Control, and Dynamics, 2010, 33(4):1273-1281. [43] POWELL R W. Six-degree-of-freedom guidance and control-entry analysis of the HL-20[J]. Journal of Spacecraft and Rockets, 1993, 30(5):537-542. [44] POWELL R. Numericalroll reversal predictor corrector aerocapture and precision landing guidance algorithms for the Mars Surveyor Program 2001 missions[C]//23rd Atmospheric Flight Mechanics Conference. Reston:AIAA, 1998:4574. [45] FUHRY D. Adaptive atmospheric reentry guidance for the Kistler K-1 orbital vehicle[C]//AIAA Guidance, Navigation, and Control Conference and Exhibit. Reston:AIAA, 1999. [46] CHOWDHRY R, ZIMMERMANN C, YOUSSEF H, et al. Predictor-corrector entry guidance for reusable launch vehicles[C]//AIAA Guidance, Navigation, and Control Conference and Exhibit. Reston:AIAA, 2001. [47] LU P. Predictor-corrector entry guidance for low-lifting vehicles[J]. Journal of Guidance, Control, and Dynamics, 2008, 31(4):1067-1075. [48] BRUNNER C W, LU P. Skip entry trajectory planning and guidance[J]. Journal of Guidance, Control, and Dynamics, 2008, 31(5):1210-1219. [49] 水尊师, 周军, 葛致磊. 基于高斯伪谱方法的再入飞行器预测校正制导方法研究[J]. 宇航学报, 2011, 32(6):1249-1255. SHUI Z S, ZHOU J, GE Z L. On-line predictor-corrector reentry guidance law based ongauss pseudospectral method[J]. Journal of Astronautics, 2011, 32(6):1249-1255(in Chinese). [50] LU P. Entry guidance:A unified method[J]. Journal of Guidance, Control, and Dynamics, 2014, 37(3):713-728. [51] 张洪波, 曾亮. 一种跳跃式返回再入的预测-校正制导方法[J]. 飞行器测控学报, 2014, 33(1):82-87. ZHANG H B, ZENG L. A predictor-corrector guidance method for skip reentry missions[J]. Journal of Spacecraft TT&C Technology, 2014, 33(1):82-87(in Chinese). [52] 叶培建, 杨孟飞, 彭兢, 等. 中国深空探测进入/再入返回技术的发展现状和展望[J]. 中国科学(技术科学), 2015, 45(3):229-238. YE P J, YANG M F, PENG J,et al. Review and prospect of atmospheric entry and earth reentry technology of China deep space exploration[J]. SCIENTIA SINICA Technologica, 2015, 45(3):229-238(in Chinese). [53] ZHANG Z, HU J. Prediction-based guidance algorithm for high-lift reentry vehicles[J]. Science China Information Sciences, 2011, 54(3):498-510. [54] WANG T, ZHANG H B, ZENG L, et al. A robust predictor-corrector entry guidance[J]. Aerospace Science and Technology, 2017, 66:103-111. [55] 吴宏鑫, 胡军. 特征建模理论、方法和应用[M]. 北京:国防工业出版社, 2019:302-335. WU H X, HU J. Theory, methods and applications of characteristic modeling[M]. Beijing:National Defense Industry Press, 2019:302-335(in Chinese). [56] 胡军, 陈祖贵, 刘良栋, 等. 神舟飞船制导、导航与控制分系统研制与飞行结果评价[J]. 航天器工程, 2004, 13(1):24-29. HU J, CHEN Z G, LIU L D,et al. Development of guidance, navigation and control system of Shenzhou spacecraft and evaluation of flight results[J]. Spacecraft Engineering, 2004, 13(1):24-29(in Chinese). [57] 杨鸣,张钊,董文强.CE-5T1返回器GNC分系统正样方案设计报告[R].北京:北京控制工程研究所,2014. YANG M, ZHANG Z, DONG W Q. TheGNC sub-system design report for CE-5T1 returner of flight model[R]. Beijing:Beijing Institute of Control Engineering, 2014(in Chinese). [58] 胡军.基于预测的全系数自校正采用一阶特征模型的论证[R].北京:北京控制工程研究所,2014. HU J. The argumentation for the all coefficients adaptive corrector with first-order characteristic model[R]. Beijing:Beijing Institute of Control Engineering, 2014(in Chinese). [59] 胡军, 吴宏鑫, 杨鸣, 等. 一种基于一阶特征模型的全系数自适应控制方法:CN104570734B[P]. 2015-04-29. HU J, WU H X, YANG M, et al.All-coefficient adaptive control method based on one-order characteristic model:CN104570734B[P]. 2015-04-29(in Chinese). [60] 杨鸣,董文强,胡军.自适应预测校正方法在高速再入制导中的应用[R].北京:北京控制工程研究所,2016. YANG M, DONG W Q, HU J. The application of adaptive predictor-corrector method on the high-speed reentry guidance[R]. Beijing:Beijing Institute of Control Engineering, 2014(in Chinese). [61] 杨鸣,董文强,乔德治.基于预测校正方法的跳跃式再入制导技术[R].北京:北京控制工程研究所,2015. YANG M, DONG W Q, QIAO D Z. The skip reentry guidance based on predictor-corrector method[R]. Beijing:Beijing Institute of Control Engineering, 2015(in Chinese). [62] 董文强,郑永洁,汤章阳.探月工程三期返回再入飞行试验器GNC分系统飞行任务总结报告[R].北京:北京控制工程研究所,2014. DONG W Q, ZHENG Y J, TANG Z Y. The summary report on the flight missions of the GNC sub-system of the return and reentry flight tester for the third phase of the lunar exploration project[R]. Beijing:Beijing Institute of Control Engineering, 2014(in Chinese). [63] 张昊,董文强.XXXX-GNC分系统船载计算机GNCC正样应用软件用户需求[R].北京:北京控制工程研究所,2018. ZHANG H, DONG W Q. TheGNCC application software user requirements for the XXXX-GNC sub-system computer[R]. Beijing:Beijing Institute of Control Engineering, 2018(in Chinese). [64] 董文强.YYYY-GNC分系统GNCC应用软件用户需求[R].北京:北京控制工程研究所,2018. DONG W Q. The GNCC application software user requirements for the YYYY-GNC sub-system[R]. Beijing:Beijing Institute of Control Engineering, 2018(in Chinese). [65] 李毛毛, 胡军. 火星进入段自适应预测校正制导方法[J]. 宇航学报, 2017, 38(5):506-515. LI MM, HU J. An adaptive predictor-corrector method of Mars entry phase[J]. Journal of Astronautics, 2017, 38(5):506-515(in Chinese). [66] 胡军. 载人飞船的一种混合再入制导方法[J]. 航天控制, 1999,17(2):19-24. HU J. A kind of mixed reentry guidance method for manned spacecraft[J]. Aerospace Control, 1999,17(2):19-24(in Chinese). [67] DUKEMAN G. Profile-following entry guidance using linear quadratic regulator theory[C]//AIAA Guidance, Navigation, and Control Conference and Exhibit. Reston:AIAA, 2002. [68] JORRIS T R, COBB R G. Three-dimensional trajectory optimization satisfying waypoint and no-fly zone constraints[J]. Journal of Guidance, Control, and Dynamics, 2009, 32(2):551-572. [69] LIANG Z X, REN Z. Tentacle-based guidance for entry flight with no-fly zone constraint[J]. Journal of Guidance, Control, and Dynamics, 2017, 41(4):996-1005. [70] 高杨, 蔡光斌, 张胜修, 等. 多禁飞区高超声速滑翔飞行器再入机动制导[J]. 兵器装备工程学报, 2019, 40(8):32-39. GAO Y, CAI G B, ZHANG S X, et al. Reentry maneuver guidance for hypersonic glide vehicles under multiple no-fly zones[J]. Journal of Ordnance Equipment Engineering, 2019, 40(8):32-39(in Chinese). [71] HE R Z, LIU L H, TANG G J, et al. Entry trajectory generation without reversal of bank angle[J]. Aerospace Science and Technology, 2017, 71:627-635. [72] 王青, 莫华东, 吴振东, 等. 考虑禁飞圆的高超声速飞行器再入预测制导[J]. 哈尔滨工业大学学报, 2015, 47(2):104-109. WANG Q, MO H D, WU Z D, et al. Predictive reentry guidance for hypersonic vehicles considering no-fly zone[J]. Journal of Harbin Institute of Technology, 2015, 47(2):104-109(in Chinese). [73] LI M M, HU J. An approach and landing guidance design for reusable launch vehicle based on adaptive predictor-corrector technique[J]. Aerospace Science and Technology, 2018, 75:13-23. [74] 胡军, 张钊. 数值预测校正制导方法用于大升阻比再入航天器的研究[C]//武汉:中国自动化大会,2015. HU J, ZHANG Z. The study of numerical predictor-corrector guidance method used in the reentry spacecraft with large lift-drag ratio[C]//Wuhan:China Automation Conference, 2015(in Chinese). [75] 唐青原. 火星气动捕获的自主轨道确定与控制[D]. 北京:中国空间技术研究院, 2019:20-60. TANG Q Y.Autonomous orbit determination and control of Mars aerodynamic capture[D]. Beijing:Chinese Academy of Space Technology,2019:20-60(in Chinese). |