[1] |
吴宝海, 罗明, 张莹, 等. 自由曲面五轴加工刀具轨迹规划技术的研究进展[J]. 机械工程学报, 2008, 44(10):9-18. WU B H, LUO M, ZHANG Y, et al. Advances in tool path planning techniques for 5-axis machining of sculptured surfaces[J]. Journal of Mechanical Engineering, 2008, 44(10):9-18(in Chinese)
|
[2] |
WANG X C, YU Y. An approach to interference-free cutter position for five-axis free-form surface side finishing milling[J]. Journal of Materials Processing Technology, 2002, 123(2):191-196.
|
[3] |
曹利新, 吴宏基, 刘健. 基于五坐标数控圆柱形刀具线接触加工自由曲面的几何学原理[J]. 机械工程学报, 2003, 39(7):134-137. CAO L X, WU H J, LIU J. Geometrical theory of machining free form surface by cylindrical cutter in 5-axis NC machine tools[J]. Journal of Mechanical Engineering, 2003, 39(7):134-137(in Chinese)
|
[4] |
吴宝海, 王尚锦. 基于正向杜邦指标线的五坐标侧铣加工[J]. 机械工程学报, 2006, 42(11):192-196. WU B H, WANG S J. 5-axis flank machining sculptured surface based on signed dupin indicatrix[J]. Journal of Mechanical Engineering, 2006, 42(11):192-196(in Chinese)
|
[5] |
蔡永林, 席光, 樊宏周, 等. 任意曲面叶轮五坐标数控加工刀具轨迹生成[J]. 西安交通大学学报, 2003, 37(1):77-80. CAI Y L, XI G, FAN H Z, et al. Tool-path planning for 5-axis numerical control machining of arbitrary surface impeller[J]. Journal of Xi'an Jiaotong University, 2003, 37(1):77-80(in Chinese)
|
[6] |
CAI Y L, XI G. Global tool interference detection in five-axis machining of sculptured surfaces[J]. Proceedings of the Institution of Mechanical Engineers Part B Journal of Engineering Manufacture, 2002, 216(10):1345-1353.
|
[7] |
CAI Y L, XI G, WANG S J. Efficient tool path planning for five-axis surface machining with a drum-taper cutter[J]. International Journal of Production Research, 2003, 41(15):3631-3644.
|
[8] |
李志强, 陈五一. 复杂曲面五坐标加工中主曲率匹配法的刃形误差[J]. 机械工程学报, 2006, 42(2):135-140. LI Z Q, CHEN W Y. Cutting edge error in principal axis mathod for five-axis machining of sculptured surfaces[J]. Journal of Mechanical Engineering, 2006, 42(2):135-140(in Chinese).
|
[9] |
陈良骥, 王永章. 整体叶轮五轴侧铣数控加工方法的研究[J]. 计算机集成制造系统, 2007, 13(1):141-146. CHEN L J, WANG Y Z. Five-axis CNC flank milling method of integral impeller[J]. Computer Integrates Manufacturing Systems, 2007, 13(1):141-146(in Chinese).
|
[10] |
HARIK R F, GONG H, BERNARD A. 5-axis flank milling:A state-of-the-art review[J]. Computer-Aided Design, 2013, 45(3):796-808.
|
[11] |
BALA M, CHANG T C. Automatic cutter selection and optimal cutter path generation for prismatic parts[J]. International Journal of Production Research, 2007, 29(11):2163-2176.
|
[12] |
CHEN Z C, FU Q. An optimal approach to multiple tool selection and their numerical control path generation for aggressive rough machining of pockets with free-form boundaries[J]. Computer-Aided Design, 2011, 43(6):651-663.
|
[13] |
CHEN Z C, ZHANG H D. Optimal cutter size determination for 21/2-axis finish machining of NURBS profile parts[J]. International Journal of Production Research, 2009, 47(22):6279-6293.
|
[14] |
ZHANG Y J, GE L L. Selecting optimal set of tool sequences for machining of multiple pockets[J]. International Journal of Advanced Manufacturing Technology, 2009, 42(3-4):233-241.
|
[15] |
CHAVES-JACOB J, POULACHON G, DUC E. New approach to 5-axis flank milling of free-form surfaces:Computation of adapted tool shape[J]. Computer-Aided Design, 2009, 41(12):918-929.
|
[16] |
LI C G, BEDI S, MANN S. Flank millable surface design with conical and barrel tools[J]. Computer-Aided Design and Applications, 2008, 5(5):461-470.
|
[17] |
MONIES F, FELICES J N, RUBIO W, et al. Five-axis NC milling of ruled surfaces:Optimal geometry of a conical tool[J]. International Journal of Production Research, 2002, 40(12):2901-2922.
|
[18] |
YAN D Q, ZHANG D H, LUO M. Optimization of barrel cutter for five-axis flank-milling based on approximation of tool envelope surface[J]. Computer-Aided Design and Applications, 2015, 12(6):1-10.
|
[19] |
LUO M, YAN D Q, WU B H, et al. Barrel cutter design and toolpath planning for high-efficiency machining of freeform surface[J]. International Journal of Advanced Manufacturing Technology, 2015, 85(9-12):2495-2503.
|
[20] |
LI T, CHEN W Y, XU R F, et al. Flank milling for blisk with a barrel ball milling cutter[J]. Key Engineering Materials, 2009, 407-408:202-206.
|
[21] |
ZHENG G, ZHU L M, BI Q Z. Cutter size optimisation and interference-free tool path generation for five-axis flank milling of centrifugal impellers[J]. International Journal of Production Research, 2012, 50(23):1-12.
|
[22] |
ZHU L M, DING H, XIONG Y L. Simultaneous optimization of tool path and shape for five-axis flank milling[J]. Computer-Aided Design, 2012, 44(12):1229-1234.
|
[23] |
WU C Y. Arbitrary surface flank milling and flank sam in the design and manufacturing of jet engine fan and compressor airfoils[C]//ASME Turbo Expo 2012:Turbine Technical Con-ference and Exposition. New York:American Society of Mechanical Engineers Digital Collection, 2012:21-30.
|
[24] |
WU C Y. Arbitrary surface flank milling of fan, compressor, and impeller blades[C]//ASME 1994 International Gas Turbine and Aeroen-gine Congress and Exposition. New York:American Society of Mechanical Engineers Digital Collection, 1994:534-539.
|
[25] |
ARAS E. Generating cutter swept envelopes in five-axis milling by two-parameter families of spheres[J]. Computer-Aided Design, 2009, 41(2):95-105.
|
[26] |
HU S M, LI Y F, JU T, et al. Modifying the shape of NURBS surfaces with geometric constraints[J]. Computer-Aided Design, 2001, 33(12):903-912.
|
[27] |
POURAZADY M, XU X. Direct manipulations of NURBS surfaces subjected to geometric constraints[J]. Computers & Graphics, 2006, 30(4):598-609.
|
[28] |
施法中. 计算机辅助几何设计与非均匀有理B样条[M]. 北京:高等教育出版社, 2001. SHI F Z. CAGD & NURBS[M]. Beijing:Higher Education Press, 2001(in Chinese).
|