[1] 段宝岩. 大型空间可展开天线的研究现状与发展趋势[J]. 电子机械工程, 2017, 33(1):1-14. DUAN B Y. Research status and development trend of large space deployable antenna[J]. Electro-Mechanical Engineering, 2017, 33(1):1-14(in Chinese). [2] RAHMAT S Y, ZAGHLOUL A I, WILIAMS A E. Large deployable antenna for satellite communications[C]//2000 Antenna and Propagation Society. Piscataway:IEEE Press, 2000:528-529. [3] 胡飞, 宋燕平, 郑士昆, 等. 空间构架式可展天线研究进展与展望[J]. 宇航学报, 2018, 39(2):111-120. HU F, SONG Y P, ZHENG S K, et al. Research progress and prospects of space-framed expandable antennas[J]. Journal of Astronautics, 2018, 39(2):111-120(in Chinese). [4] IMBRIALE W A, GAO S S, BOCCIA L. Space antenna handbook[M]. New York:John Wiley & Sons, 2012:179-180. [5] PETERSON L D, BULLOCK S J, HINKLE J D, et al. Micron accurate deployable antenna and sensor technology for new-millennium-era spacecraft[C]//1996 IEEE Aerospace Applications Conference. Piscataway:IEEE Press, 1998:129-139. [6] WADA B K. Adaptive structures-an overview[J]. Journal of Spacecraft and Rockets, 1990, 27(3):330-337. [7] TAKANO T. Large deployable antennas-concepts and realization[C]//IEEE Antennas and Propagation Society International Symposium. Piscataway:IEEE Press, 1999:1512-1515. [8] RUSCH W V T. The current state of the reflector antenna are-entering the 1990 s[J]. Proceedings of the IEEE, 1992, 80(1):113-126. [9] 马小飞, 李洋, 肖勇, 等. 大型空间可展开天线反射器研究现状与展望[J]. 空间电子技术, 2018, 15(2):16-26. MA X F, LI Y, XIAO Y, et al, Deployment and tendency of large space deployable antenna reflector[J]. Space Electronic Technology, 2018, 15(2):16-26(in Chinese). [10] HUANG H, GUAN F L, PAN L L, et al. Design and deploying study of a new petal-type deployable solid surface antenna[J]. Acta Astronautica, 2018, 148:99-110. [11] ESCRIG F. Expandable space structures[J]. International Journal of Space Structures, 1985, 1(2):79-91. [12] ARCHER J S, PALMER W B. Antenna technology for QUASAT application:N85-2381314-15[R]. Washington,D.C.:Langley Research Center Large Space Antenna Systems Technol, 1984. [13] 刘荣强, 田大可, 邓宗全. 空间可展开天线结构的研究现状与展望[J]. 机械设计, 2010, 27(9):1-10. LIU R Q, TIAN D K, DENG Z Q. Research status and prospects of space expandable antenna structure[J]. Journal of Machine Design, 2010, 27(9):1-10(in Chinese). [14] GUEST S D, PELLEGRINO S. A new concept for solid surface deployable antennas[J]. Acta Astronautica, 1996, 38(2):103-113. [15] YOU Z. Deployable structures for masts and reflector antennas[D]. Cambridge:University of Cambridge, 1994:10-18. [16] 王建东. 可展开固面天线机构设计与性能研究[D]. 哈尔滨:哈尔滨工程大学, 2019:2-3. WANG J D. Research on mechanism design and performance of deployable solid reflector antenna[D]. Harbin:Harbin Engineering University, 2019:2-3(in Chinese). [17] ABT B, WOLLENHAUPT H. A deployable 30/20 GHz multibeam offset antenna[C]//10th Communications Satellite Systems Conference and Technical Display, 1984:658-660. [18] GUEST S D, PELLEGRINO S. Inextensional wrapping of flat membranes[C]//Proceedings of the First International Seminar on Structural Morphology. Montpellier:IAEA, 1992:203-215. [19] TIBERT G. Deployable tensegrity structures for space applications[D]. Stockholm:KTH Royal Institute of Technology, 2002:17-19. [20] LOVE A W. Some highlights in reflector antenna development[J]. Radio Science, 1976, 11:671-755. [21] 张辰, 韦娟芳, 戚学良, 等. 径向肋可展开天线动力学特性试验研究[J]. 振动、测试与诊断, 2018, 38(4):780-784,875. ZHANG C, WEI J F, QI X L, et al. Experimental study on dynamic characteristics of radial rib deployable antenna[J]. Journal of Vibration, Measurement & Diagnosis, 2018, 38(4):780-784,875(in Chinese). [22] GIBBONS R C. Potential future applications for the tracking and data relay satellite Ⅱ (TDRS Ⅱ) system[J]. Acta Astronautica, 1995, 35(8):537-545. [23] SAUDER J, CHAHAT N, THOMSON M, et al. Ultra-compact Ka-band parabolic deployable antenna for radar and interplanetary CubeSats[C]//29th Annual AIAA/USU Conference on Small Satellites. Reston:AIAA, 2015:1-3. [24] CHAHAT N, SAUDER J, THOMSON M, et al. CubeSat deployable Ka-band reflector antenna for deep space missions[C]//2015 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting. Piscataway:IEEE Press, 2015:2185-2186. [25] 周彩根, 樊昀. 静止轨道电子侦察卫星发展趋势展望[C]//中国电子学会电子对抗分会学术年会.北京:中国电子学会, 2003:71-73. ZHOU C G, FAN Y. Prospect of development trend of geostationary satellite electronic reconnaissance satellite[C]//China Electronics Academic Meeting Electronic Warfare Branch Academic Annual Meeting. Beijing:Chinese Institute of Electronics, 2003:71-73(in Chinese). [26] 董志强, 段宝岩. 星载天线缠绕肋条的力学特性研究[J]. 西安电子科技大学学报, 2001,28(6):755-758. DONG Z Q, DUAN B Y. Study on mechanical properties of spaceborne antenna wound ribs[J]. Journal of Xidian University, 2001,28(6):755-758(in Chinese). [27] CAMPBELL G, BAILEY M C, BELVIN W K. The development of the 15-meter hoop column deployable antenna system with final structural and electromagnetic performance results[J]. Acta Astronautica, 1988, 17(1):69-77. [28] BELVIN W K, EDIGHOFFER H H, HERSTROM C L. Quasistatic shape adjustment of a 15-meter-diameter space antenna[J]. Journal of Spacecraft and Rockets, 1989, 26(3):129-136. [29] TAKANO T, MIURA K, NATORI M, et al. Deployable antenna with 10-m maximum diameter for space use[J]. IEEE Transactions on Antennas and Propagation, 2004, 52(1):2-11. [30] 寇艳玲. 采用绳索张力桁架结构的可展开大口径星载天线[J]. 空间电子技术, 1999(2):38-46. KOU Y L. Deployable large-caliber spaceborne antenna with rope tension truss structure[J]. Space Electronic Technology, 1999(2):38-46(in Chinese). [31] MIURA K, MIYAZAKI Y. Concept of the tension truss antenna[J]. AIAA Journal, 1990, 28(6):1098-1104. [32] TAKANO T, NATORI M, MIYOSHI K, et al. Characteristics verification of a deployable onboard antenna of 10 m maximum diameter[J]. Acta Astronautica, 2002, 51(11):771-778. [33] PELLEGRINO S, TAN L. Stiffness design of spring back reflectors[C]//Proceedings of the 43rd Structures, Structural Dynamics, and Materials Conference. Reston:AIAA, 2002:2306-2317. [34] 郭金伟, 黄志荣, 许允斗, 等. 一类基于四面体组合单元的模块化构架式可展开天线机构[J]. 航空学报, 2020, 41(3):423219. GUO J W, HUANG Z R, XU Y D, et al. Deployment antenna mechanism with class of modular truss based on tetrahedral combination unit[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(3):423219(in Chinese). [35] XU Y, GUAN F L. Structure-electronic synthesis design of deployable truss antenna[J]. Aerospace Science and Technology, 2013, 26(1):259-267. [36] 杨毅, 丁希仑. 四棱锥单元平板式可展开收拢机构的运动特性分析[J]. 航空学报, 2010, 31(6):1257-1265. YANG Y, DING X L. Kinematic analysis of a plane deployable mechanism assembled by four pyramid cells[J]. Acta Aeronautica et Astronautica Sinica, 2010, 31(6):1257-1265(in Chinese). [37] 田大可. 模块化空间可展开天线支撑桁架设计与实验研究[D]. 哈尔滨:哈尔滨工业大学, 2011:70-76. TIAN D K, Design and experimental research on truss structure for modular space deployable antenna[D]. Harbin:Harbin Institute of Technology, 2011:70-76(in Chinese). [38] KOHATA H. Development and operation of engineering test Satellite-VⅢ (KIKU-8)[J]. IEICE Communications Society Magazine, 2007, 2007(3):64-78. [39] 陈向阳, 关富玲. 六棱柱单元可展抛物面天线结构设计[J]. 宇航学报, 2001(1):75-78. CHEN X Y, GUAN F L. Design of a parabolic antenna structure for a hexagonal prism unit[J]. Journal of Astronautics, 2001(1):75-78(in Chinese). [40] NATORI M C, HIRABAYASHI H, OKUIZUMI N, et al. A structure concept of high precision mesh antenna for space VLBI observation[C]//43rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston:AIAA, 2002:1359-1362. [41] YONEZAWA K, HOMMA M. Attitude control on ETS-VⅢ mobile communication satellite with large deployable antenna[C]//21 st AIAA International Communications Satellite Systems Conference and Exhibit. Reston:AIAA, 2003:1-5. [42] LIN F, CHEN J B, CHEN C Z, et al. Deployment accuracy analysis of cable-strut deployable mechanism with joint clearances and forces constrained[J]. Journal of Vibro Engineering, 2018, 20(5):2085-2089. [43] THOMSON M. AstroMeshTM deployable reflectors for Ku and Ka band commercial satellites[C]//20th AIAA International Communication Satellite Systems Conference and Exhibit. Reston:AIAA, 2002:2032-2040. [44] NORTHROP G. Astromesh reflector family[OL].[2020-01-22]. https://www.northropgrumman.com/space/astro-aerospace-products-astro-mesh/ [45] 刘升. 空间双剪式铰天线设计与展开过程动力学分析[D]. 西安:西安电子科技大学, 2014:2-4. LIU S. Design and deployment dynamic analysis for space double-layer pantograph antenna[J]. Xi'an:Xidian University, 2014:2-4(in Chinese). [46] CHERNIAVSKY A G, GULYAYEV V I, GAIDAICHUK V V, et al. Large deployable space antennas based on usage of polygonal pantograph[J]. Journal of Aerospace Engineering, 2005, 18(3):139-145. [47] MEDZMARIASHVILI E, TSERODZE S, TSIGNADZE N, et al. A new design variant of the large deployable space reflector[C]//Earth & Space 2006:Engineering, Construction, and Operations in Challenging Environment. Houston:ASCE, 2006:1-8. [48] 黄河. 充气可展开薄膜反射面结构的型面分析与优化[D]. 杭州:浙江大学, 2016:7-10. HUANG H. Profile analysis and optimization of inflatable expandable membrane structure[D]. Hangzhou:Zhejiang University, 2016:7-10(in Chinese). [49] LICHODZIEJEWSKI D, CRAVEY R, HOPKINS G. Inflatably deployed membrane waveguide array antenna for space[C]//44th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston:AIAA, 2003:1649-1652. [50] CASSAPAKIS C G, LOVE A W, PALISOC A L. Inflatable space antennas-a brief overview[C]//1998 IEEE Aerospace Conference Proceedings. Piscataway:IEEE Press, 1998, 3:453-459. [51] 王援朝. 充气天线结构技术概述[J]. 电讯技术, 2003(2):6-11. WANG Y C. Inflatable antenna structure technology overview[J]. Telecommunication Engineering, 2003(2):6-11(in Chinese). [52] FURUYA H. Concept of deployable tensegrity structures in space application[J]. International Journal of Space Structures, 1992, 7(2):143-151. [53] 晓燕, 紫晓. 太空唱响东方红(上)——纪念我国东方红二号通信卫星发射成功30周年[J]. 中国航天, 2014(4):3-8. XIAO Y, ZI X. Singing dongfanghong from space (Part 1)-commemorating the 30th anniversary of the successful launch of China's Dongfanghong 2 communication satellite[J]. Aerospace China, 2014(4):3-8(in Chinese). [54] 刘丹. "实践十三号"让你的手机总在服务区[J]. 计算机与网络, 2017, 43(9):14-15. LIU D. "SJ-13" keeps your phone in the service area[J]. Computer & Network, 2017, 43(9):14-15(in Chinese). [55] 张润宁, 姜秀鹏. 环境一号C卫星系统总体设计及其在轨验证[J]. 雷达学报, 2014, 3(3):249-255. ZHANG R N, JIANG X P. System design and In-orbit verification of the HJ-1-C SAR satellite[J]. Journal of Radars, 2014, 3(3):249-255(in Chinese). [56] 李海英, 张珊珊, 李世强, 等. 环境一号C卫星合成孔径雷达相干性分析[J]. 雷达学报, 2014, 3(3):320-325. LI H Y, ZHANG S S, LI S Q, et al. Coherent performance analysis of the HJ-1-C synthetic aperture radar[J]. Journal of Radars, 2014, 3(3):320-325(in Chinese). [57] i北理.[系列]北理工空间载荷之在宇宙展开一张"天网"[OL].[2017-09-06]. https://www.sohu.com/a/190118847_154262/. I Beili.[Series]North polytechnic space load expands a "Skynet" in the universe[OL].[2020-01-16]. https://www.sohu.com/a/190118847_154262/(in Chinese). [58] 寻广彬. 星载径向肋索网天线结构设计分析与形状主动控制[D]. 大连:大连理工大学, 2019:3-6. XUN G B. Structure design analysis and active shape control of spaceborne radial rib net antenna[D]. Dalian:Dalian University of Technology, 2019:3-6(in Chinese). [59] 张立华, 熊亮, 孙骥, 等. 嫦娥四号任务中继星"鹊桥"技术特点[J]. 中国科学:技术科学, 2019, 49(2):138-146. ZHANG L H, XIONG L, SUN J, et al. ChangE 4 mission relay star "QueQiao" technical characteristics[J]. Science in China:Technical Science, 2019, 49(2):138-146(in Chinese). [60] 成新兴. 空间充气可展硬化薄膜天线结构热分析[D]. 上海:上海交通大学, 2011:2-6. CHENG X X. Thermal analysis of space inflatable expandable film antenna structure[D]. Shanghai:Shanghai Jiao Tong University, 2011:2-6(in Chinese). [61] 姜伟. 空间充气可展天线反射面设计、分析与试验研究[D]. 上海:上海交通大学, 2007:1-6. JIANG W. Design, analysis and experimental study of reflecting surface of space inflatable expandable antenna[D]. Shanghai:Shanghai Jiao Tong University, 2007:1-6(in Chinese). [62] 沈永正. 薄壳抛物柱面端部加载成型方法与精度分析[D]. 哈尔滨:哈尔滨工业大学, 2015:4-9. SHEN Y Z. Thin-shell parabolic cylindrical end loading forming method and precision analysis[D]. Harbin:Harbin Institute of Technology, 2015:4-9(in Chinese). [63] 朱加炉, 陈志平, 陈学雷, 等. 天籁实验抛物柱面天线阵结构设计与力学分析[J]. 天文研究与技术, 2015, 12(1):14-22. ZHU J L, CHEN Z P, CHEN X L, et al. Structural design and mechanical analysis of parabolic antenna array of scorpio experiment[J]. Astronomical Research & Technology, 2015, 12(1):14-22(in Chinese). [64] KRAUS J D. Big ear two:Listening for other-worlds[M]. Cygnus-Quasar Books, 1995. [65] SWENSON G W, LO Y. The University of Ⅲ inois radio telescope[J]. IRE Transactions on Antennas and Propagation, 1961, 9(1):9-16. [66] MEDICINA R. Medicina radio telescopes visitor center "Marcello Ceccarelli"[OL].[2019-12-02]. http://www.med.ira.inaf.it/index_EN.htm. [67] COGNARD I, SILVA B D. Grand radiotélescope[OL].[2020-01-12]. https://www.obs-nancay.fr/-Grand-Radiotelescope-.html?lang=fr. [68] SUKUMAR S, VELUMAMY T, PRAMESH R A, et al. Ooty synthesis radio telescope:Design and performance[J]. Astronomical Society of Indian, Bulletin, 1988, 16:93-110. [69] RAHMATSAMⅡ Y, HUANG J, LOPEZ B, et al. Advanced precipitation radar antenna:array-fed offset membrane cylindrical reflector antenna[J]. IEEE Transactions on Antennas and Propagation, 2005, 53(8):2503-2515. [70] IM E, DURDEN S L, KAKAR R K, et al. Next generation of spaceborne rain radars:science rationales and technology status[C]//Microwave Remote Sensing of the Atmosphere and Environment Ⅲ. International Society for Optics and Photonics.Bellingham:SPIE, 2003, 4894:178-189. [71] SADOWY G, BERKUN A, DURDEN S, et al. Technologies for the next generation of spaceborne precipitation radars[C]//2001 IEEE Aerospace Conference Proceedings. Piscataway:IEEE Press, 2001, 4:1811-1823. [72] LIN J, SAPNA G, SCARBOROUGH S, et al. Advanced precipitation radar antenna singly curved parabolic antenna reflector development[C]//44th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston:AIAA, 2003:1651-1655. [73] RAHMAT-SAMⅡ Y, HUANG J, LOPEZ B, et al. Advanced precipitation radar antenna:Array-fed offset membrane cylindrical reflector antenna[J]. IEEE Transactions on Antennas and Propagation, 2005, 53(8):2503-2515. [74] SINTON S, RAHMAT-SAMⅡ Y. Random surface error effects on offset cylindrical reflector antennas[J]. IEEE Transactions on Antennas and Propagation, 2003, 51(6):1331-1337. [75] IM E, DURDEN S. Next-generation spaceborne precipitation radar instrument concepts and technologies[C]//45th AIAA Aerospace Sciences Meeting and Exhibit. Reston:AIAA,2007:1105-1106. [76] 方刚, 张玉梅. 双频段双极化星载降水测量雷达天线设计[J]. 电子与信息学报, 2016, 38(8):1977-1983. FANG G, ZHANG Y M. Design of dual-band dual-polarized spaceborne precipitation measurement radar antenna[J]. Journal of Electronics & Information Technology, 2016, 38(8):1977-1983(in Chinese). [77] SOYKASAP O, WATT A M, PELLEGRINO S. New deployable reflector concept[C]//45th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics & Materials Conference. Reston:AIAA, 2004:1574-1575. [78] SPENCE T, COOLEY M, STENGER P, et al. Concept design of a multi-band shared aperture reflect array/reflector antenna[C]//2016 IEEE International Symposium on Phased Array Systems and Technology (PAST). Piscataway:IEEE Press, 2016:1-6. [79] LIU H, ZHANG X, NIU L, et al. A combined L-band synthetic aperture radiometer and fan-beam scatter meter for soil moisture and ocean salinity measurement[C]//2012 IEEE International Geoscience and Remote Sensing Symposium. Piscataway:IEEE Press, 2012:4644-4647. [80] MUSKETT R R. L-band in SAR penetration depth experiment, north slope Alaska[J]. Journal of Geoscience and Environment Protection, 2017, 5(3):14. [81] NEC. ANSARO-2(Advanced satellite with new system architecture for observation-2)[OL].[2020-04-12]. https://directory.eoportal.org/web/eoportal/satellite-missions/a/asnaro-2. [82] LIU H, ZHU D, NIU L, et al. MICAP (Microwave imager combined active and passive):A new instrument for Chinese ocean salinity satellite[C]//2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS). Piscataway:IEEE Press, 2015:184-187. [83] 戴宇航, 蒋松, 陈金宝, 等. 大型星载天线桁架式可折展机构的模态分析[J]. 上海航天, 2019, 36(1):97-101. DAI Y H, JIANG S, CHEN J B, et al. Modal analysis of large spaceborne antenna truss foldable mechanism[J]. Aerospace Shanghai, 2019, 36(1):97-101(in Chinese). [84] LIN F, CHEN C Z, CHEN J B, et al. Modelling and analysis for a cylindrical net-shell deployable mechanism[J]. Advances in Structural Engineering, 2019, 22(15):3149-3160. [85] 王玉. 模块化抛物柱面天线展开机构与索网结构设计与分析[D]. 西安:西安电子科技大学, 2018:28-33. WANG Y. Design and analysis of modular parabolic cylindrical antenna deployment mechanism and cable net structure[D]. Xi'an:Xidian University, 2018:28-33(in Chinese). [86] 秦波, 吕胜男, 刘全, 等. 可展收抛物柱面天线机构的设计及分析[J]. 机械工程学报, 2020, 56(5):100-107. QIN B, LV S N, LIU Q, et al. Design and analysis of a retractable parabolic cylinder antenna mechanism[J]. Journal of Mechanical Engineering, 2020, 56(5):100-107(in Chinese). [87] SHI C, GUO H, ZHENG Z, et al. Conceptual configuration synthesis and topology structure analysis of double-layer hoop deployable antenna unit[J]. Mechanism and Machine Theory, 2018, 129:232-260. [88] HAN B, ZHENG D, XU Y, et al. Kinematic characteristics and dynamics analysis of an over constrained scissors double-hoop truss deployable antenna mechanism based on screw theory[J]. IEEE Access, 2019, 7:140755-140768. [89] HAN B, XU Y, YAO J, et al. Design and analysis of a scissors double-ring truss deployable mechanism for space antennas[J]. Aerospace Science and Technology, 2019, 93:105357. [90] LIU R, GUO H, LIU R, et al. Structural design and optimization of large cable-rib tension deployable antenna structure with dynamic constraint[J]. Acta Astronautica, 2018, 151:160-172. [91] MARIYAM S, CHEN W. Analytical kinematics and trajectory planning of large scale hexagonal modular mesh deployable antenna[C]//MATEC Web of Conferences. EDP Sciences, 2016, 77:01012. [92] SUN Z, DING Y K, ZHANG Y Q, et al. Deployment kinematic analysis and control of a new hoop truss deployable antenna[C]//MATEC Web of Conferences. EDP Sciences, 2019, 256:05004. [93] LI P, LIU C, TIAN Q, et al. Dynamics of a deployable mesh reflector of satellite antenna:Parallel computation and deployment simulation[J]. Journal of Computational and Nonlinear Dynamics, 2016, 11(6):061005. [94] WU H, LIU M, WANG J, et al. An easy-to-implement thermal test system for large deployable antennas[J]. Acta Astronautica, 2018, 151:494-503. [95] BI Y Q, WANG J, LI X Y. On-orbit temperature field calculation and analysis for large net-shape deployable antennas[J]. Computational Methods and Experimental Measurements XVⅡ, 2015, 59:411. [96] SIRIGULENG B, ZHANG W, LIU T, et al. Vibration modal experiments and modal interactions of a large space deployable antenna with carbon fiber material and ring-truss structure[J]. Engineering Structures, 2019, 207:109932. [97] LI P, LIU C, TIAN Q, et al. Dynamics of a deployable mesh reflector of satellite antenna:Form-finding and modal analysis[J]. Journal of Computational and Nonlinear Dynamics, 2016, 11(4):041017. [98] 张磊, 蒋金华, 张晨曙, 等. 柔性经编金属网格材料的双向拉伸性能[J]. 针织工业, 2013(2):10-13. ZHANG L, JIANG J H, ZHANG C S, et al. Bi-axial tensile properties of flexible warp knitted metal mesh[J]. Knitting Industries, 2013(2):10-13(in Chinese). [99] ZHANG Y, ZHANG H, YANG D, et al. Form-finding design of cable-mesh deployable reflector antennas considering wire mesh properties[J]. AIAA Journal, 2019, 57(11):5027-5041. [100] LIU R, GUO H, LIU R, et al. Shape accuracy optimization for cable-rib tension deployable antenna structure with tensioned cables[J]. Acta Astronautica, 2017, 140:66-77. |