航空学报 > 2022, Vol. 43 Issue (2): 325059-325059   doi: 10.7527/S1000-6893.2021.25059

动态优先级解耦的无人机集群轨迹分布式序列凸规划

徐广通1,2, 王祝3, 曹严1,2, 孙景亮1,2, 龙腾1,2   

  1. 1. 北京理工大学 宇航学院, 北京 100081;
    2. 飞行器动力学与控制教育部重点实验室, 北京 100081;
    3. 华北电力大学 河北省发电过程仿真与优化控制技术创新中心, 保定 071003
  • 收稿日期:2020-12-07 修回日期:2021-01-05 发布日期:2021-02-24
  • 通讯作者: 孙景亮 E-mail:sunjingliangac@163.com
  • 基金资助:
    国家自然科学基金(61903033,62003036,51675047);中国博士后科学基金(2019TQ0037)

Dynamic-priority-decoupled UAV swarm trajectory planning using distributed sequential convex programming

XU Guangtong1,2, WANG Zhu3, CAO Yan1,2, SUN Jingliang1,2, LONG Teng1,2   

  1. 1. School of Aerospace Engineering, Beijing Institute of Technology, Beijing 100081, China;
    2. Key Laboratory of Dynamics and Control of Flight Vehicle, Ministry of Education, Beijing 100081, China;
    3. Hebei Technology Innovation Center of Simulation & Optimized Control for Power Generation, North China Electric Power University, Baoding 071003, China
  • Received:2020-12-07 Revised:2021-01-05 Published:2021-02-24
  • Supported by:
    National Natural Science Foundation of China (61903033, 62003036, 51675047);China Postdoctoral Science Foundation (2019TQ0037)

摘要: 针对无人机集群轨迹规划高维强耦合特征导致计算复杂度高的难题,提出了动态优先级解耦的序列凸规划方法(DPD-SCP),将耦合的集群轨迹规划问题拆分为若干单机凸规划子问题,通过分布式求解提高集群轨迹规划的计算效率与可扩展性。设计飞行时间驱动的动态优先级解耦机制,降低飞行时间短无人机优先级,挖掘其轨迹调整潜力,消除集群相互规避导致的迭代振荡问题,提升集群轨迹迭代的收敛速度。定制时间一致约束更新准则,避免集群飞行时间非正常增长情况,并理论证明了DPD-SCP方法能够生成满足动力学、避碰与时间一致约束的集群轨迹。仿真结果表明:所提的DPD-SCP方法的求解效率显著优于耦合SCP、串行优先级解耦SCP以及并行解耦SCP方法。

关键词: 无人机集群, 协同轨迹规划, 优先级解耦机制, 分布式求解, 序列凸规划

Abstract: In this paper, a Dynamic-Priority-Decoupled Sequential Convex Programming method (DPD-SCP) is proposed to alleviate the high-computational complexity burden for UAV swarm trajectory planning caused by high-dimensional and strong-coupling features. DPD-SCP splits a coupled swarm trajectory planning problem into several single-UAV convex programming subproblems, and the computational efficiency and scalability are enhanced by utilizing distributed computation. The flight-time-driven dynamic priority decoupled mechanism is designed to improve the convergence rate of swarm trajectory iterations. In this decoupled mechanism, the priority of UAVs with short flight time is lowered to explore the UAV's trajectory adjustment potential and eliminate the oscillation problem due to mutual avoidance of swarms. The time-consistency constraint update criterion is customized to avoid abnormal growth of swarm flight time. Furthermore, it is theoretically validated that DPD-SCP can generate the swarm trajectories that can satisfy the constraints of dynamics, collision avoidance, and time consistency. The simulation results show that the efficiency of DPD-SCP is significantly higher than that of the coupled SCP, serial-priority-decoupled SCP, and parallel-decoupled SCP methods.

Key words: UAV swarm, cooperative trajectory planning, priority decoupled mechanism, distributed computation, sequential convex programming

中图分类号: