航空学报 > 2021, Vol. 42 Issue (3): 324301-324301   doi: 10.7527/S1000-6893.2020.24301

复杂环境下考虑动力学约束的翼伞轨迹规划

孙昊1, 孙青林1, 滕海山2,3, 周朋2,3, 陈增强1   

  1. 1. 南开大学 人工智能学院, 天津 300350;
    2. 北京空间机电研究所, 北京 100094;
    3. 航天科技集团有限公司 航天进入减速与着陆技术实验室, 北京 100094
  • 收稿日期:2020-05-27 修回日期:2020-06-15 发布日期:2020-07-06
  • 通讯作者: 孙青林 E-mail:sunql@nankai.edu.cn
  • 基金资助:
    国家自然科学基金(61973172,61973175,62003177);天津市科学基金重点项目(19JCZDJC32800);博士后基金(2020M670633,2020M670045)

Trajectory planning for parafoil system considering dynamic constraints in complicated environment

SUN Hao1, SUN Qinglin1, TENG Haishan2,3, ZHOU Peng2,3, CHEN Zengqiang1   

  1. 1. College of Artificial Intelligence, Nankai University, Tianjin 300350;
    2. Beijing Institute of Space Mechanics & Electricity, Beijing 100094;
    3. Laboratory of Aerospace Entry, Descent and Landing Technology, China Aerospace Science and Technology Corporation, Beijing 100094
  • Received:2020-05-27 Revised:2020-06-15 Published:2020-07-06
  • Supported by:
    The National Natural Science Foundation of China(61973172, 61973175,62003177); The Key Technologies Research and Development Program of Tianjin(19 JCZDJC32800); China Postdoctoral Science Foundation(2020M670633, 2020M670045)

摘要: 翼伞系统具有大惯性、强非线性等特征,而基于传统质点模型所规划的目标轨迹难以满足复杂环境下的系统动力学约束,因此在轨迹规划中采用高自由度动力学模型也就成为了计算翼伞真实运动轨迹的必然趋势。然而,翼伞的动力学模型更加复杂,目前迫切需要解决的问题就是保证规划轨迹平滑、稳定。针对该问题,本文将建立精确的翼伞六自由度动力学模型,将其引入翼伞归航的轨迹规划中,并通过改进高斯伪谱法,设计一种基于分段点规划、离散点初次规划、离散点自重构的三阶轨迹优化策略。仿真结果表明,所提算法可解决传统算法在应用动力学模型后难以得到稳定轨迹的问题,并实现复杂环境下的精确地形规避,确保规划轨迹满足翼伞的非线性动力学约束。

关键词: 翼伞系统, 动力学特性, 轨迹规划, 多约束条件, 复杂地形

Abstract: Because of the large inertia and strong nonlinearity of the parafoil system, the object trajectory based on the mass model cannot satisfy the dynamic constraints of the parafoil under complicated terrain conditions. Therefore, application of high-order dynamic models to trajectory planning becomes an inevitable trend in calculating a real system trajectory. However, the dynamic model of the parafoil is complicated. Currently, one of the urgent problems to be solved is to ensure smooth and stable trajectories. To overcome this difficulty, this study builds an accurate six degree-of-freedom dynamic model of the parafoil which is then introduced into the trajectory planning. A multi-stage trajectory planning strategy is designed by improving the Gauss pseudo-spectrum method based on segment point planning, initial discrete point planning and discrete point self-configuration. The simulation results show the effectiveness of the proposed algorithm in overcoming the difficulty of obtaining a stable trajectory with a dynamic model by the traditional planning method. Accurate terrain avoidance is realized under complex external conditions, and the planning trajectory can satisfy the dynamic constraints of the parafoil.

Key words: parafoil systems, dynamic constraints, trajectory planning, multiple constraints, complex terrain

中图分类号: