[1] HERRIN J L, DUTTON J C. Supersonic base flow experiments in the near wake of a cylindrical afterbody[J]. AIAA Journal, 1994, 32(1):77-83.
[2] BOURDON C J, DUTTON J C. Planar visualizations of large-scale turbulent structures in axisymmetric supersonic separated flows[J]. Physics of Fluids, 1999, 11(1):201-213.
[3] CHOI H, MOIN P. Grid-point requirements for large eddy simulation:Chapman's estimates revisited[J]. Physics of Fluids, 2012, 24(1):011702.
[4] SPALART P R, JOU W H, STRELETS M, et al. Comments on the feasibility of LES for wings, and on a hybrid RANS/LES approach[C]//Proceeding of the First AFOSR International Conference on DNS/LES. Columbus:Greyden, 1997:137-147.
[5] SPALART P R, DECK S, SHUR M, et al. A new version of detached-eddy simulation, resistant to ambiguous grid densities[J]. Theoretical and Computational Fluid Dynamics, 2006, 20(3):181-195.
[6] MENTER F R, KUNTZ M. Adaptation of eddy-viscosity turbulence models to unsteady separated flow behind vehicles[C]//The Aerodynamics of Heavy Vehicles:Trucks, Buses and Trains. Berlin Heidelberg:Springer-Verlag, 2004:339-352.
[7] TRAVIN A, SHUR M, STRELETS M, et al. Physical and numerical upgrades in the detached-eddy simulation of complex turbulent flows[C]//Advances in LES of Complex Flows. Norwell:Kluwer Academic, 2006:239-254.
[8] SHUR M L, SPALART P R, STRELETS M, et al. A hybrid RANS-LES approach with delayed-DES and wall-modeled LES capabilities[J]. International Journal of Heat and Fluid Flow, 2008, 29(6):1638-1649.
[9] XIAO Z, LIU J, HUANG J, et al. Numerical dissipation effects on massive separation around tandem cylinders[J]. AIAA Journal, 2012, 50(5):1119-1136.
[10] XIAO Z, LUO K. Improved delayed detached-eddy simulation of massive separation around triple cylinders[J]. Acta Mechanica Sinica, 2015, 31(6):799-816.
[11] XIAO Z, LIU J, LUO K, et al. Investigation of flows around a rudimentary landing gear with advanced detached-eddy-simulation approaches[J]. AIAA Journal, 2013, 51(1):107-125.
[12] XIAO L, XIAO Z, DUAN Z, et al. Improved-delayed-detached-eddy simulation of cavity-induced transition in hypersonic boundary layer[J]. International Journal of Heat and Fluid Flow, 2015, 51:138-150.
[13] HUANG J, XIAO Z, LIU J, et al. Simulation of shock wave buffet and its suppression on an OAT15A supercritical airfoil by IDDES[J]. Science China-Physics Mechanics & Astronomy, 2012, 55(2):260-271.
[14] FORSYTHE J R, HOFFMANN K A, CUMMINGS R M, et al. Detached-eddy simulation with compressibility corrections applied to a supersonic axisymmetric base flow[J]. Journal of Fluids Engineering, 2002, 124(4):911-923.
[15] BAURLE R A, TAM C J, EDWARDS J R, et al. Hybrid simulation approach for cavity flows:blending, algrithm and boundary treatment issues[J]. AIAA Journal, 2003, 41(8):1463-1480.
[16] KAWAI S, FUJⅡ K. Computational study of supersonic base flow using hybrid turbulence methodology[J]. AIAA Journal, 2005, 43(6):1256-1275.
[17] SIMON F, DECK S, GUILLEN P, et al. Reynolds-averaged navier-stokes/large-eddy simulations of supersonic base flow[J]. AIAA Journal, 1994, 44(11):2578-2590.
[18] 薛帮猛, 杨永. 基于两方程湍流模型的DES方法在超音速圆柱底部流动计算中的应用[J]. 西北工业大学学报, 2006, 24(5):544-547. XUE B M, YANG Y. Technical details in applying DES method to computing supersonic cylinder-base flow[J]. Journal of Northwestern Polytechnical University, 2006, 24(5):544-547(in Chinese).
[19] 肖志祥, 符松. 用RANS/LES混合方法研究超声速底部流动[J]. 计算物理, 2009, 26(2):221-230. XIAO Z X, FU S. Study on supersonic base flow using RANS/LES methods[J]. Chinese Journal of Computational Physics, 2009, 26(2):221-230(in Chinese).
[20] 高瑞泽, 阎超. LES/RANS混合方法对超声速底部流动的应用[J]. 北京航空航天大学学报, 2011, 37(9):1095-1099. GAO R Z, YAN C. LES/RANS hybrid method for supersonic axisymmetric base flow[J]. Journal of University of Aeronautics and Astronautics, 2011, 37(9):1095-1099(in Chinese).
[21] 陈琦, 司芳芳, 陈坚强, 等. RANS/LES在超声速突起物绕流中的应用研究[J]. 航空学报, 2013, 34(7):1531-1537. CHEN Q, SI F F, CHEN J Q, et al. Study of protuberances in supersonic flow with RANS/LES method[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(7):1531-1537(in Chinese).
[22] HARTEN A, HYMAN J M. Self-adjusting grid methods for one-dimensional hyperbolic conservation laws[J]. Journal of Computational Physics, 1983, 50(2):235-369.
[23] MENTER F R. Two-equation eddy viscosity turbulence models for engineering applications[J]. AIAA Journal, 1994, 32(8):1598-1605.
[24] SUZEN Y B, HOFFMANN K A. Investigation of supersonic jet exhaust flow by one- and two-equation turbulence models:AIAA-1998-0322[R]. Reston:AIAA, 1998.
[25] GRITSKEVICH M S, GARBARUK A V, SCHUTZE J, et al. Development of DDES and IDDES formulations for the k-ω shear stress transport model[J]. Flow, Turbulence and Combustion, 2012, 88(3):431-449.
[26] VATSA V N, LOCKARD D P. Assessment of hybrid rans/les turbulence model for aeroacoustics applications:AIAA-2010-4011[R]. Reston:AIAA, 2010.
[27] VAN LEER B. Towards the ultimate conservative difference scheme V:A second order sequel to godunov's method[J]. Journal of Computational Physics, 1979, 32:101-136.
[28] BORGES R, CARMONA M, COSTA B, et al. An improved weighted essentially non-oscillatory scheme for hyperbolic conservation laws[J]. Journal of Computational Physics, 2008, 227(6):3191-3211.
[29] JIANG G S, SHU C W. Efficient implementation of weighted ENO schemes[J]. Journal of Computational Physics, 1996, 126(1):202-228.
[30] JEONG J, HUSSAIN F. On the identification of a vortex[J]. Journal of Fluid Mechanics, 1995, 285(2):69-94. |